Åttakantigt kakel

Octagonal kakel
Octagonal tiling
Poincaré skiva modell av hyperboliska planet
Typ Hyperbolisk vanlig plattsättning
Vertex-konfiguration 8 3
Schläfli symbol
{8,3} t{4,8}
Wythoff symbol

3 | 8 2 2 8 | 4 4 4 4 |
Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.png
Symmetrigrupp

[8,3], (*832) [8,4], (*842) [(4,4,4)], (*444)
Dubbel Order-8 triangulär plattsättning
Egenskaper Vertex-transitive , edge-transitive , face-transitive

Inom geometrin är den åttkantiga plattsättningen en vanlig plattsättning av det hyperboliska planet . Den representeras av Schläfli-symbolen för {8,3} , med tre regelbundna oktagoner runt varje vertex. Den har också en konstruktion som en trunkerad order-8 kvadratisk plattsättning, t{4,8}.

Enhetliga färger

Liksom den hexagonala plattsättningen på det euklidiska planet finns det 3 enhetliga färger av denna hyperboliska plattsättning. Den dubbla plattsättningen V8.8.8 representerar de grundläggande domänerna för [(4,4,4)] symmetri.

Regelbunden Avkortningar
H2-8-3-dual.svg
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 84-t12.png
t{4,8}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.png
Uniform tiling 444-t012.png

CDel node 1.pngCDel 8.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node h0.png t{4 [3] } = = CDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.png
Dubbel plattsättning
H2-8-3-primal.svg

CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png {3,8} = CDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 433-t2.png
CDel node.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.png=CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2checkers 444.png
CDel node f1.pngCDel 8.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 8.pngCDel node h0.png = = CDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 4.png

Vanliga kartor

Den vanliga kartan {8,3} 2,0 kan ses som en 6-färgning av den hyperboliska plattsättningen {8,3}. Inom den vanliga kartan anses åttahörningar av samma färg vara samma ansikte som visas på flera platser. De 2,0 prenumerationerna visar att samma färg kommer att upprepas genom att flytta 2 steg i rak riktning efter motsatta kanter. Denna vanliga karta har också en representation som en dubbel täckning av en kub, representerad av Schläfli-symbolen {8/2,3}, med 6 åttakantiga ytor, dubbelt omslagna {8/2}, med 24 kanter och 16 hörn. Det beskrevs av Branko Grünbaum i hans 2003 artikel Are Your Polyhedra the Same as My Polyhedra?

Double-cube-regular-map.png

Relaterade polyedrar och plattsättningar

Denna plattsättning är topologiskt en del av sekvensen av vanliga polyedrar och plattsättningar med Schläfli-symbolen {n,3}.

* n 32 symmetrimutation av regelbundna plattsättningar: { n ,3}
Sfärisk euklidisk Kompakt hyperb. Paraco. Icke-kompakt hyperbolisk
Spherical trigonal hosohedron.png Uniform tiling 332-t0-1-.png Uniform tiling 432-t0.png Uniform tiling 532-t0.png Uniform polyhedron-63-t0.png Heptagonal tiling.svg H2-8-3-dual.svg H2-I-3-dual.svg H2 tiling 23j12-1.png H2 tiling 23j9-1.png H2 tiling 23j6-1.png H2 tiling 23j3-1.png
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}

Och är också topologiskt en del av sekvensen av vanliga plattsättningar med Schläfli-symbolen {8,n}.

n 82 symmetrimutationer av regelbundna plattsättningar: 8 n
Plats Sfärisk Kompakt hyperbolisk Paracompact
Kakelsättning H2-8-3-dual.svg H2 tiling 248-1.png H2 tiling 258-1.png H2 tiling 268-1.png H2 tiling 278-1.png H2 tiling 288-4.png H2 tiling 28i-4.png
Konfig. 8.8 8 3 8 4 85 8 6 87 8 8 ...8∞

Från en Wythoff-konstruktion finns tio hyperboliska likformiga plattsättningar som kan baseras på den vanliga åttakantiga plattsättningen.

Om du ritar brickorna färgade som röda på originalytorna, gula vid de ursprungliga hörnen och blå längs originalkanterna, det finns 10 former.

Enhetliga åttkantiga/triangulära plattor
Symmetri: [8,3], (*832)
[8,3] + (832)

[1 + ,8,3] (*443)

[8,3 + ] (3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8}
rr{8,3} s 2 {3,8}
tr{8,3} sr{8,3} h{8,3} h 2 {8,3} s{3,8}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel label4.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngellerCDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngellerCDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel label4.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2-8-3-dual.svg H2-8-3-trunc-dual.svg H2-8-3-rectified.svg
Uniform tiling 433-t01.png
H2-8-3-trunc-primal.svg
Uniform tiling 433-t012.png
H2-8-3-primal.svg
Uniform tiling 433-t2.png
H2-8-3-cantellated.svg H2-8-3-omnitruncated.svg H2-8-3-snub.svg Uniform tiling 433-t0.pngUniform tiling 433-t1.png Uniform tiling 433-t02.pngUniform tiling 433-t12.png Uniform tiling 433-snub1.png
Uniform tiling 433-snub2.png
Uniforma dualer
V8 3 V3.16.16 V3.8.3.8 V6.6.8 V3 8 V3.4.8.4 V4.6.16 V3 4 .8 V(3,4) 3 V8.6.6 V3 5 .4
CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2-8-3-primal.svg H2-8-3-kis-primal.svg H2-8-3-rhombic.svg H2-8-3-kis-dual.svg H2-8-3-dual.svg H2-8-3-deltoidal.svg H2-8-3-kisrhombille.svg H2-8-3-floret.svg Uniform dual tiling 433-t0.png Uniform dual tiling 433-t01.png Uniform dual tiling 433-snub.png
Enhetliga åttkantiga/fyrkantiga plattsättningar


[8,4], (*842) (med [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (* 4222) index 2 subsymmetrier) (Och [(∞,4,∞,4)] (*4242) index 4 subsymmetri)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1-88.pngCDel nodes.png
CDel 2.png
CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel nodes.png
= = = CDel label4.pngCDel branch 11.pngCDel 4a4b-cross.pngCDel branch 11.pngCDel label4.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
=CDel node 1.pngCDel split1-88.pngCDel nodes 11.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel split1-88.pngCDel nodes 11.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel 2.png
= = = CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.pngCDel label4.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel 2.png
=CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
= = CDel label4.pngCDel branch.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
CDel 2.png
=CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 248-1.png H2 tiling 248-3.png H2 tiling 248-2.png H2 tiling 248-6.png H2 tiling 248-4.png H2 tiling 248-5.png H2 tiling 248-7.png
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniforma dualer
CDel node f1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 248b.png H2chess 248f.png H2chess 248a.png H2chess 248e.png H2chess 248c.png H2chess 248d.png H2checkers 248.png
V8 4 V4.16.16 V(4,8) 2 V8.8.8 V4 8 V4.4.4.8 V4.8.16
Växlingar

[1 + ,8,4] (*444)

[8 + ,4] (8*2)

[8,1 + ,4] (*4222)

[8,4 + ] (4*4)

[8,4,1 + ] (*882)

[(8,4,2 + )] (2*42)

[8,4] + (842)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
=CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node.png
=CDel node h.pngCDel split1-88.pngCDel nodes hh.png
CDel node.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
=CDel label4.pngCDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 10.png
CDel node.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
=CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
=CDel node.pngCDel split1-88.pngCDel nodes 10lu.png
CDel node h.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h.png
=CDel label4.pngCDel branch hh.pngCDel 2a2b-cross.pngCDel nodes hh.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 444-t0.png Uniform tiling 84-h01.png Uniform tiling 443-t1.png Uniform tiling 444-snub.png Uniform tiling 88-t0.png H2-5-4-primal.svg Uniform tiling 84-snub.png
h{8,4} s{8,4} tim{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternerande dualer
CDel node fh.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.png
Uniform tiling 88-t1.png Uniform tiling 66-t1.png Uniform dual tiling 433-t0.png Uniform tiling 88-t2.png H2-5-4-dual.svg
V(4.4) 4 V3.(3.8) 2 V(4.4.4) 2 V(3,4) 3 V8 8 V4.4 4 V3.3.4.3.8
Enhetliga (4,4,4) plattsättningar
Symmetri: [(4,4,4)], (*444)
[(4,4,4)] + (444)

[(1 + ,4,4,4)] (*4242)

[(4 + ,4,4)] (4*22)
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node h0.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node h1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
H2 tiling 444-1.png H2 tiling 444-3.png H2 tiling 444-2.png H2 tiling 444-6.png H2 tiling 444-4.png H2 tiling 444-5.png H2 tiling 444-7.png Uniform tiling 444-snub.png H2 tiling 288-4.png H2 tiling 344-2.png

0 t (4,4,4) h{8,4}

t 0,1 (4,4,4) h 2 {8,4}

t 1 (4,4,4) { 4,8 } 1/2

t 1,2 (4,4,4) h 2 {8,4}

t 2 (4,4,4) h{8,4}

t 0,2 (4,4,4) r {4,8 } 1/2

t 0,1,2 4,4,4) ( t{4,8 } 1/2

s(4,4,4) s { 4,8} 1/2

h(4,4,4) h { 4,8} 1/2

hr(4,4,4) hr { 4,8} 1/2
Uniforma dualer
H2chess 444b.png H2chess 444f.png H2chess 444a.png H2chess 444e.png H2chess 444c.png H2chess 444d.png H2checkers 444.png Uniform dual tiling 433-t0.png H2 tiling 288-1.png H2 tiling 266-2.png
V(4.4) 4 V4.8.4.8 V(4.4) 4 V4.8.4.8 V(4.4) 4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V8 8 V(4,4) 3

Se även

  •   John H. Conway , Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Kapitel 19, The Hyperbolic Archimedean Tessellations)
  •    "Kapitel 10: Vanliga bikakor i hyperboliskt utrymme". Geometrins skönhet: tolv essäer . Dover Publikationer. 1999. ISBN 0-486-40919-8 . LCCN 99035678 .

externa länkar