Lista över enhetliga polyedrar av Wythoff symbol

Polyeder
Klass Antal och egenskaper
Platonska fasta ämnen
( 5 , konvex, vanlig)
Arkimedeiska fasta ämnen
( 13 , konvex, uniform)
Kepler–Poinsot polyedrar
( 4 , regelbunden, icke-konvex)
Uniforma polyedrar
( 75 , uniform)

Prismatoid : prismor , antiprismor etc.
( 4 oändliga uniformsklasser)
Polyedra kakel ( 11 vanliga , i planet)
Kvasi-regelbundna polyedrar
( 8 )
Johnson fasta ämnen ( 92 , konvex, olikformig)
Pyramider och bipyramider ( oändlig )
Stellationer Stellationer
Polyedriska föreningar ( 5 vanliga )
Deltahedra
( Deltaedrar , liksidiga triangelytor)
Snub polyedra
( 12 uniformer , inte spegelvänd)
Zonohedron
( Zonohedra , ansikten har 180° symmetri)
Dubbel polyeder
Självdubbel polyeder ( oändlig )
Katalansk solid ( 13 , arkimedeisk dual)

Det finns många relationer mellan de enhetliga polyedrarna .

Här är de grupperade efter Wythoff-symbolen .

Nyckel









Bildnamn Bowers husdjursnamn V Antal hörn,E Antal kanter , F Antal ansikten=Ansiktskonfiguration ? =Euler-egenskap, grupp=Symmetrigrupp Wythoff-symbol – Vertexfigur W – Wenningernummer, U – Uniformnummer, K- Kaleidonummer, C -Coxeternummer alternativt namn andra alternativnamn

Regelbunden

Alla ytor är identiska, varje kant är identisk och varje vertex är identisk. De har alla en Wythoff-symbol av formen p|q 2.

Konvex

De platonska soliderna.

Tetrahedron.png






Tetraeder Tet V4,E6,F4=4{3} χ =2, grupp= Td ( , A3 , [3,3], *332) 3 | 2 3 | 2 2 2 - 3.3.3 W1, U01, K06, C15

Octahedron.png





Octahedron Oct V 6,E 12,F 8=8{3} χ =2, group= O h , BC 3 , [4,3], (*432) 4 | 2 3 - 3.3.3.3 W2, U05, K10, C17

Hexahedron.png





Hexaederkub V 8,E 12,F 6=6{4} χ =2, grupp= O h , B 3 , [4,3], (*432) 3 | 2 4 - 4.4.4 W3, U06, K11, C18

Icosahedron.png





Icosahedron Ike V 12,E 30,F 20=20{3} χ =2, grupp= I h , H 3 , [5,3], (*532) 5 | 2 3 - 3.3.3.3.3 W4, U22, K27, C25

Dodecahedron.png





Dodecahedron Doe V 20,E 30,F 12=12{5} χ =2, grupp= I h , H 3 , [5,3], (*532) 3 | 2 5 - 5,5,5 W5, U23, K28, C26

Icke-konvex

Kepler-Poinsot fasta ämnen.

Great icosahedron.png





Stor ikosaeder Gike V 12,E 30,F 20=20{3} χ =2, grupp= I h , H 3 , [5,3], (*532) 5 2 | 2 3 - (3 5 )/2 W41, U53, K58, C69

Great dodecahedron.png





Stor dodekaeder Gad V 12,E 30,F 12=12{5} χ =-6, grupp= I h , H 3 , [5,3], (*532) 5 2 | 2 5 - (5 5 )/2 W21, U35, K40, C44

Small stellated dodecahedron.png





Liten stjärnformad dodekaeder Sissid V 12,E 30,F 12=12 5 χ =-6, grupp= I h , H 3 , [5,3], (*532) 5 | 2 5 2 - ( 5 2 ) 5 W20, U34, K39, C43

Great stellated dodecahedron.png





Stor stjärnformad dodekaeder Gissid V 20,E 30,F 12=12 { 5 2 } χ =2, group= I h , H 3 , [5,3], (*532) 3 | 2 5 2 - ( 5 2 ) 3 W22, U52, K57, C68

Kvasiregelbundet

Varje kant är identisk och varje vertex är identisk. Det finns två typer av ansikten som visas på ett alternerande sätt runt varje vertex. Den första raden är halvregelbunden med 4 ytor runt varje vertex. De har Wythoff-symbolen 2|p q. Den andra raden är dirigonal med 6 ytor runt varje vertex. De har Wythoff-symbolen 3|pq eller 3 / 2 |p q.

Polyhedron 6-8 max.png







Cuboctahedron Co V 12,E 24,F 14=8{3}+6{4} χ =2, grupp= O h , B 3 , [4,3], (*432), ordning 48 T d , [3 ,3], (*332), ordning 24 2 | 3 4 3 3 | 2 - 3.4.3.4 W11, U07, K12, C19

Polyhedron 12-20 max.png





Icosidodecahedron Id V 30,E 60,F 32=20{3}+12{5} χ =2, group= I h , H 3 , [5,3], (*532), order 120 2 | 3 5 - 3.5.3.5 W12, U24, K29, C28

Great icosidodecahedron.png








Great icosidodecahedron Gid V 30,E 60,F 32=20{3}+12{5/2} χ =2, group=I h , [5,3], *532 2 | 3 5/2 2 | 3 5/3 2 | 3/2 5/2 2 | 3/2 5/3 - 3,5/2,3,5/2 W94, U54, K59, C70

Dodecadodecahedron.png








Dodecadodecahedron Did V 30,E 60,F 24=12{5}+12{5/2} χ =−6, group=I h , [5,3], *532 2 | 5 5/2 2 | 5 5/3 2 | 5/2 5/4 2 | 5/3 5/4 - 5,5/2,5,5/2 W73, U36, K41, C45

Small ditrigonal icosidodecahedron.png





Liten ditrigonal icosidodecahedron Sidtid V 20,E 60,F 32=20{3}+12{5/2} χ =−8, group=I h , [5,3], *532 3 | 5/2 3 - (3,5/2) 3 W70, U30, K35, C39

Ditrigonal dodecadodecahedron.png








Ditrigonal dodecadodecahedron Ditdid V 20,E 60,F 24=12{5}+12{5/2} χ =−16, group=I h , [5,3], *532 3 | 5/3 5 3/2 | 5 5/2 3/2 | 5/3 5/4 3 | 5/2 5/4 - (5,5/3) 3 W80, U41, K46, C53

Great ditrigonal icosidodecahedron.png








Stor ditrigonal icosidodecahedron Gidtid V 20,E 60,F 32=20{3}+12{5} χ =−8, group=I h , [5,3], *532 3/2 | 3 5 3 | 3/2 5 3 | 3 5/4 3/2 | 3/2 5/4 - ((3,5) 3 )/2 W87, U47, K52, C61

Wythoff pq|r

Trunkerade vanliga former

Varje vertex har tre ytor som omger den, varav två är identiska. Dessa har alla Wythoff-symboler 2 p|q, några är konstruerade genom att trunkera de vanliga fasta beståndsdelarna.

Polyhedron truncated 4a max.png





Trunkerad tetraeder Tut V 12,E 18,F 8=4{3}+4{6} χ =2, grupp= T d , A 3 , [3,3], (*332), ordning 24 2 3 | 3 - 3.6.6 W6, U02, K07, C16

Polyhedron truncated 8 max.png







Trunkerad oktaedertå V 24,E 36,F 14=6{4}+8{6} χ =2, grupp= O h , B 3 , [4,3], (*432), ordning 48 T h , [ 3,3] och (*332), ordning 24 2 4 | 3 3 3 2 | - 4.6.6 W7, U08, K13, C20

Polyhedron truncated 6 max.png






Trunkerad kub Tic V 24,E 36,F 14=8{3}+6{8} χ =2, grupp= O h , B 3 , [4,3], (*432), ordning 48 2 3 | 4 - 3.8.8 W8, U09, K14, C21 Trunkerad hexaeder

Polyhedron truncated 20 max.png





Trunkerad icosahedron Ti V 60,E 90,F 32=12{5}+20{6} χ =2, grupp= I h , H 3 , [5,3], (*532), ordning 120 2 5 | 3 - 5.6.6 W9, U25, K30, C27

Polyhedron truncated 12 max.png





Trunkerad dodekaeder Tid V 60,E 90,F 32=20{3}+12{10} χ =2, grupp= I h , H 3 , [5,3], (*532), ordning 120 2 3 | 5 - 3.10.10 W10, U26, K31, C29

Great truncated dodecahedron.png






Trunkerad stor dodekaeder Tigid V 60,E 90,F 24=12{5/2}+12{10} χ =−6, group=I h , [5,3], *532 2 5/2 | 5 2 5/3 | 5 - 10.10.5/2 W75, U37, K42, C47

Great truncated icosahedron.png






Trunkerad stor ikosaeder Tiggy V 60,E 90,F 32=12{5/2}+20{6} χ =2, grupp=I h , [5,3], *532 2 5/2 | 3 2 5/3 | 3 - 6.6.5/2 W95, U55, K60, C71

Stellated truncated hexahedron.png







Stellat stympad hexaeder Quith V 24,E 36,F 14=8{3}+6{8/3} χ =2, group=O h , [4,3], *432 2 3 | 4/3 2 3/2 | 4/3 - 3,8/3,8/3 W92, U19, K24, C66 Quasitruncated hexahedron stellatruncated kub

Small stellated truncated dodecahedron.png







Liten stjärnformad stympad dodekaeder Quit Sissid V 60,E 90,F 24=12{5}+12{10/3} χ =−6, group=I h , [5,3], *532 2 5 | 5/3 2 5/4 | 5/3 - 5.10/3.10/3 W97, U58, K63, C74 Kvasitruncated liten stjärnformad dodekaeder Liten stjärnavrundad dodekaeder

Great stellated truncated dodecahedron.png






Stor stjärnformad stympad dodekaeder Avsluta Gissid V 60,E 90,F 32=20{3}+12{10/3} χ =2, group=I h , [5,3], *532 2 3 | 5/3 - 3.10/3.10/3 W104, U66, K71, C83 Quasitruncated stora stellated dodecahedron Stor stellatruncated dodecahedron

Hemipolyedrar

Hemipolyedrarna har alla ansikten som passerar genom ursprunget. Deras Wythoff-symboler har formen pp/m|q eller p/mp/n|q. Med undantag för tetrahemihexaedern förekommer de i par och är nära besläktade med de halvregelbundna polyedrarna, som kuboktoedern.

Tetrahemihexahedron.png





Tetrahemihexahedron Thah V 6,E 12,F 7=4{3}+3{4} χ =1, group=T d , [3,3], *332 3/2 3 | 2 (dubbeltäckande) - 3.4.3/2.4 W67, U04, K09, C36

Octahemioctahedron.png





Octahemioctahedron Oho V 12,E 24,F 12=8{3}+4{6} χ =0, group=O h , [4,3], *432 3/2 3 | 3 - 3.6.3/2.6 W68, U03, K08, C37

Cubohemioctahedron.png





Cubohemioctahedron Cho V 12,E 24,F 10=6{4}+4{6} χ =−2, group=O h , [4,3], *432 4/3 4 | 3 (dubbeltäckande) - 4.6.4/3.6 W78, U15, K20, C51

Small icosihemidodecahedron.png





Liten icosihemidodecahedron Seihid V 30,E 60,F 26=20{3}+6{10} χ =−4, group=I h , [5,3], *532 3/2 3 | 5 (dubbeltäckande) - 3.10.3/2.10 W89, U49, K54, C63

Small dodecahemidodecahedron.png





Liten dodekahemidodekaeder Sidhid V 30,E 60,F 18=12{5}+6{10} χ =−12, grupp=I h , [5,3], *532 5/4 5 | 5 (dubbeltäckande) - 5.10.5/4.10 W91, U51, K56, C65

Great icosihemidodecahedron.png





Great icosihemidodecahedron Geihid V 30,E 60,F 26=20{3}+6{10/3} χ =−4, group=I h , [5,3], *532 3/2 3 | 5/3 - 3,10/3,3/2,10/3 W106, U71, K76, C85

Great dodecahemidodecahedron.png





Great dodecahemidodecahedron Gidhid V 30,E 60,F 18=12{5/2}+6{10/3} χ =−12, group=I h , [5,3], *532 5/3 5/2 | 5/3 (dubbeltäckande) - 5/2.10/3.5/3.10/3 W107, U70, K75, C86

Great dodecahemicosahedron.png





Great dodecahemicosahedron Gidhei V 30,E 60,F 22=12{5}+10{6} χ =−8, group=I h , [5,3], *532 5/4 5 | 3 (dubbeltäckande) - 5.6.5/4.6 W102, U65, K70, C81

Small dodecahemicosahedron.png





Liten dodecahemicosahedron Sidhei V 30,E 60,F 22=12{5/2}+10{6} χ =−8, group=I h , [5,3], *532 5/3 5/2 | 3 (dubbeltäckande) - 6,5/2,6,5/3 W100, U62, K67, C78

Rombisk kvasi-regelbunden

Fyra ytor runt spetsen i mönstret pqrq Namnet rombisk härrör från att infoga en kvadrat i cuboctahedron och icosidodecahedron. Wythoff-symbolen har formen pq|r.

Polyhedron small rhombi 6-8 max.png







Rhombicuboctahedron Sirco V 24,E 48,F 26=8{3}+(6+12){4} χ =2, grupp= O h , B 3 , [4,3], (*432), ordning 48 3 4 | 2 - 3.4.4.4 W13, U10, K15, C22 Rhombicuboctahedron

Small cubicuboctahedron.png






Liten cubicuboctahedron Socco V 24,E 48,F 20=8{3}+6{4}+6{8} χ =−4, group=O h , [4,3], *432 3/2 4 | 4 3 4/3 | 4 - 4,8,3/2,8 W69, U13, K18, C38

Great cubicuboctahedron.png






Great cubicuboctahedron Gocco V 24,E 48,F 20=8{3}+6{4}+6{8/3} χ =−4, group=O h , [4,3], *432 3 4 | 4/3 4 3/2 | 4 - 3,8/3,4,8/3 W77, U14, K19, C50

Uniform great rhombicuboctahedron.png







Ickekonvex stor rombikuboktaeder Querco V 24,E 48,F 26=8{3}+(6+12){4} χ =2, grupp=O h , [4,3], *432 3/2 4 | 2 3 4/3 | 2 - 4.4.4.3/2 W85, U17, K22, C59 Quasirhombicuboctahedron

Polyhedron small rhombi 12-20 max.png







Rhombicosidodecahedron Srid V 60,E 120,F 62=20{3}+30{4}+12{5} χ =2, grupp= I h , H 3 , [5,3], (*532), ordning 120 3 5 | 2 - 3.4.5.4 W14, U27, K32, C30 Rhombicosidodecahedron

Small dodecicosidodecahedron.png






Liten dodecicosidodecahedron Saddid V 60,E 120,F 44=20{3}+12{5}+12{10} χ =−16, group=I h , [5,3], *532 3/2 5 | 5 3 5/4 | 5 - 5.10.3/2.10 W72, U33, K38, C42

Great dodecicosidodecahedron.png






Great dodecicosidodecahedron Gaddid V 60,E 120,F 44=20{3}+12{5/2}+12{10/3} χ =−16, group=I h , [5,3], *532 5/ 2 3 | 5/3 5/3 3/2 | 5/3 - 3,10/3,5/2,10/7 W99, U61, K66, C77

Uniform great rhombicosidodecahedron.png







Ickekonvex stor rhombicosidodecahedron Qrid V 60,E 120,F 62=20{3}+30{4}+12{5/2} χ =2, grupp=I h , [5,3], *532 5/3 3 | 2 5/2 3/2 | 2 - 3.4.5/3.4 W105, U67, K72, C84 Quasirhombicosidodecahedron

Small icosicosidodecahedron.png





Liten icosicosidodecahedron Siid V 60,E 120,F 52=20{3}+12{5/2}+20{6} χ =−8, group=I h , [5,3], *532 5/2 3 | 3 - 6,5/2,6,3 W71, U31, K36, C40

Small ditrigonal dodecicosidodecahedron.png






Liten ditrigonal dodecicosidodecahedron Sidditdid V 60,E 120,F 44=20{3}+12{5/2}+12{10} χ =−16, grupp=I h , [5,3], *532 5/3 3 | 5 5/2 3/2 | 5 - 3.10.5/3.10 W82, U43, K48, C55

Rhombidodecadodecahedron.png





Rhombidodecadodecahedron Raded V 60,E 120,F 54=30{4}+12{5}+12{5/2} χ =−6, group=I h , [5,3], *532 5/2 5 | 2 - 4,5/2,4,5 W76, U38, K43, C48

Icosidodecadodecahedron.png






Icosidodecadodecahedron Ided V 60,E 120,F 44=12{5}+12{5/2}+20{6} χ =−16, group=I h , [5,3], *532 5/3 5 | 3 5/2 5/4 | 3 - 5,6,5/3,6 W83, U44, K49, C56

Great ditrigonal dodecicosidodecahedron.png






Stor ditrigonal dodecicosidodecahedron Gidditdid V 60,E 120,F 44=20{3}+12{5}+12{10/3} χ =−16, group=I h , [5,3], *532 3 5 | 5/3 5/4 3/2 | 5/3 - 3.10/3.5.10/3 W81, U42, K47, C54

Great icosicosidodecahedron.png






Stor icosicosidodecahedron Giid V 60,E 120,F 52=20{3}+12{5}+20{6} χ =−8, group=I h , [5,3], *532 3/2 5 | 3 3 5/4 | 3 - 5.6.3/2.6 W88, U48, K53, C62

Jämnsidiga former

Wythoff pqr|

Dessa har tre olika ytor runt varje vertex, och hörnen ligger inte på något symmetriplan. De har Wythoff-symbolen pqr|, och vertexfigurerna 2p.2q.2r.

Polyhedron great rhombi 6-8 max.png






Trunkerad cuboctahedron Girco V 48,E 72,F 26=12{4}+8{6}+6{8} χ =2, grupp= O h , B 3 , [4,3], (*432), ordning 48 2 3 4 | - 4.6.8 W15, U11, K16, C23 Rhombitruncated cuboctahedron Trunked cuboctahedron

Great truncated cuboctahedron.png






Stor stympad kuboktaeder Quitco V 48,E 72,F 26=12{4}+8{6}+6{8/3} χ =2, grupp=O h , [4,3], *432 2 3 4/ 3 | - 4,6/5,8/3 W93, U20, K25, C67 Quasitruncated cuboctahedron

Cubitruncated cuboctahedron.png






Cubitruncated cuboctahedron Cotco V 48,E 72,F 20=8{6}+6{8}+6{8/3} χ =−4, group=O h , [4,3], *432 3 4 4/ 3 | - 6.8.8/3 W79, U16, K21, C52 Cuboctatruncated cuboctahedron

Polyhedron great rhombi 12-20 max.png






Trunkerat icosidodecahedron Grid V 120,E 180,F 62=30{4}+20{6}+12{10} χ =2, group= I h , H 3 , [5,3], (*532), ordning 120 2 3 5 | - 4.6.10 W16, U28, K33, C31 Rhombitruncated icosidodecahedron Trunked icosidodecahedron

Great truncated icosidodecahedron.png






Stor stympad icosidodecahedron Gaquatid V 120,E 180,F 62=30{4}+20{6}+12{10/3} χ =2, grupp=I h , [5,3], *532 2 3 5/ 3 | - 4.6.10/3 W108, U68, K73, C87 Great quasitruncated icosidodecahedron

Icositruncated dodecadodecahedron.png






Icositruncated dodecadodecahedron Idtid V 120,E 180,F 44=20{6}+12{10}+12{10/3} χ =−16, group=I h , [5,3], *532 3 5 5/ 3 | - 6.10.10/3 W84, U45, K50, C57 Icosidodecatruncated icosidodecahedron

Truncated dodecadodecahedron.png






Trunkerad dodecadodecahedron Quitdid V 120,E 180,F 54=30{4}+12{10}+12{10/3} χ =−6, group=I h , [5,3], *532 2 5 5/ 3 | - 4.10/9.10/3 W98, U59, K64, C75 Quasitruncated dodecadodecahedron

Wythoff pq (rs)|

Vertex figur pq-p.-q. Wythoff pq (rs)|, blandning av pqr| och pqs|.

Small rhombihexahedron.png





Liten rhombihexahedron Sroh V 24,E 48,F 18=12{4}+6{8} χ =−6, grupp=O h , [4,3], *432 2 4 (3/2 4/2) | - 4.8.4/3.8/7 W86, U18, K23, C60

Great rhombihexahedron.png





Stor rhombihexahedron Groh V 24,E 48,F 18=12{4}+6{8/3} χ =−6, grupp=O h , [4,3], *432 2 4/3 (3/2 4 /2) | - 4,8/3,4/3,8/5 W103, U21, K26, C82

Rhombicosahedron.png





Rhombicosahedron Ri V 60,E 120,F 50=30{4}+20{6} χ =−10, group=I h , [5,3], *532 2 3 (5/4 5/2) | - 4.6.4/3.6/5 W96, U56, K61, C72

Great rhombidodecahedron.png





Stor rhombidodecahedron omgjord V 60,E 120,F 42=30{4}+12{10/3} χ =−18, grupp=I h , [5,3], *532 2 5/3 (3/2 5 /4) | - 4.10/3.4/3.10/7 W109, U73, K78, C89

Great dodecicosahedron.png





Stor dodecikosaeder Giddy V 60,E 120,F 32=20{6}+12{10/3} χ =−28, grupp=I h , [5,3], *532 3 5/3 (3/2 5 /2) | - 6.10/3.6/5.10/7 W101, U63, K68, C79

Small rhombidodecahedron.png





Liten rhombidodecahedron Sird V 60,E 120,F 42=30{4}+12{10} χ =−18, grupp=I h , [5,3], *532 2 5 (3/2 5/2) | - 4.10.4/3.10/9 W74, U39, K44, C46

Small dodecicosahedron.png





Liten dodecikosaeder Siddy V 60,E 120,F 32=20{6}+12{10} χ =−28, grupp=I h , [5,3], *532 3 5 (3/2 5/4) | - 6.10.6/5.10/9 W90, U50, K55, C64

Snub polyedra

Dessa har Wythoff-symbolen |pqr, och en icke-wythoffisk konstruktion ges |pqr s.

Wythoff |pqr

Symmetrigrupp
O

Polyhedron snub 6-8 left max.png





Snub kub Snic V 24,E 60,F 38=(8+24){3}+6{4} χ =2, group= O , 1 / 2 B 3 , [4,3] + , (432), order 24 | 2 3 4 - 3.3.3.3.4 W17, U12, K17, C24

jag h

Small snub icosicosidodecahedron.png





Liten snubbig icosicosidodecahedron Seside V 60,E 180,F 112=(40+60){3}+12{5/2} χ =−8, group=I h , [5,3], *532 | 5/2 3 3 - 3 5 .5/2 W110, U32, K37, C41

Small retrosnub icosicosidodecahedron.png






Liten retrosnub icosicosidodecahedron Sirsid V 60,E 180,F 112=(40+60){3}+12{5/2} χ =−8, group=I h , [5,3], *532 | 3/2 3/2 5/2 - (3 5 .5/3)/2 W118, U72, K77, C91 Liten inverterad retrosnub icosicosidodecahedron

jag

Polyhedron snub 12-20 left max.png





Snub dodecahedron Snid V 60,E 150,F 92=(20+60){3}+12{5} χ =2, group= I , 1 / 2 H 3 , [5,3] + , (532), order 60 | 2 3 5 - 3.3.3.3.5 W18, U29, K34, C32

Snub dodecadodecahedron.png





Snub dodecadodecahedron Siddid V 60,E 150,F 84=60{3}+12{5}+12{5/2} χ =−6, group=I, [5,3] + , 532 | 2 5/2 5 - 3.3.5/2.3.5 W111, U40, K45, C49

Inverted snub dodecadodecahedron.png





Inverterad snub dodecadodecahedron Isdid V 60,E 150,F 84=60{3}+12{5}+12{5/2} χ =−6, group=I, [5,3] + , 532 | 5/3 2 5 - 3.3.5.3.5/3 W114, U60, K65, C76

jag

Great snub icosidodecahedron.png





Great snub icosidodecahedron Gosid V 60,E 150,F 92=(20+60){3}+12{5/2} χ =2, group=I, [5,3] + , 532 | 2 5/2 3 - 3 4 .5/2 W113, U57, K62, C88

Great inverted snub icosidodecahedron.png





Great inverted snub icosidodecahedron Gisid V 60,E 150,F 92=(20+60){3}+12{5/2} χ =2, group=I, [5,3] + , 532 | 5/3 2 3 - 3 4 .5/3 W116, U69, K74, C73

Great retrosnub icosidodecahedron.png






Great retrosnub icosidodecahedron Girsid V 60,E 150,F 92=(20+60){3}+12{5/2} χ =2, group=I, [5,3] + , 532 | 2 3/2 5/3 - (3 4 .5/2)/2 W117, U74, K79, C90 Great inverted retrosnub icosidodecahedron

jag

Snub icosidodecadodecahedron.png





Snub icosidodecadodecahedron Sided V 60,E 180,F 104=(20+60){3}+12{5}+12{5/2} χ =−16, group=I, [5,3] + , 532 | 5/3 3 5 - 3.3.3.5.3.5/3 W112, U46, K51, C58

Great snub dodecicosidodecahedron.png





Stor snubb dodecicosidodecahedron Gisdid V 60,E 180,F 104=(20+60){3}+(12+12){5/2} χ =−16, grupp=I, [5,3] + , 532 | 5/3 5/2 3 - 3.3.3.5/2.3.5/3 W115, U64, K69, C80

Wythoff |pqrs

Symmetrigrupp
Ih

Great dirhombicosidodecahedron.png





Stor dirhombicosidodecahedron Gidrid V 60,E 240,F 124=40{3}+60{4}+24{5/2} χ =−56, group=I h , [5,3], *532 | 3/2 5/3 3 5/2 - 4,5/3,4.3.4.5/2.4.3/2 W119, U75, K80, C92