Nästan prime

Demonstration, med Cuisenaire-spön , av 2-nästan prime karaktär av siffran 6

I talteorin kallas ett naturligt tal k -nästan primtal om det har k primtalsfaktorer . Mer formellt är ett tal n k -nästan primtal om och endast om Ω ( n ) = k , där Ω( n ) är det totala antalet primtal i primtalsfaktoriseringen av n ( kan också ses som summan av alla primtals exponenter):

Ett naturligt tal är alltså primtal om och endast om det är 1-nästan primtal, och semiprimtal om och endast om det är 2-nästan primtal. Mängden k - nästan primtal betecknas vanligtvis med Pk . Den minsta k- nästan primtal är 2 k . De första få k -nästan primtal är:

k k -nästan primtal OEIS- sekvens
1 2, 3, 5, 7, 11, 13, 17, 19, … A000040
2 4, 6, 9, 10, 14, 15, 21, 22, … A001358
3 8, 12, 18, 20, 27, 28, 30, … A014612
4 16, 24, 36, 40, 54, 56, 60, … A014613
5 32, 48, 72, 80, 108, 112, … A014614
6 64, 96, 144, 160, 216, 224, … A046306
7 128, 192, 288, 320, 432, 448, … A046308
8 256, 384, 576, 640, 864, 896, … A046310
9 512, 768, 1152, 1280, 1728, … A046312
10 1024, 1536, 2304, 2560, … A046314
11 2048, 3072, 4608, 5120, … A069272
12 4096, 6144, 9216, 10240, … A069273
13 8192, 12288, 18432, 20480, … A069274
14 16384, 24576, 36864, 40960, … A069275
15 32768, 49152, 73728, 81920, … A069276
16 65536, 98304, 147456, … A069277
17 131072, 196608, 294912, … A069278
18 262144, 393216, 589824, … A069279
19 524288, 786432, 1179648, … A069280
20 1048576, 1572864, 2359296, … A069281

Antalet π k ( n ) av positiva heltal mindre än eller lika med n med exakt k primtalsdelare (inte nödvändigtvis distinkta) är asymptotiskt till:

ett resultat av Landau . Se även Hardy–Ramanujans sats .

Egenskaper

  • Multipeln av a -nästan primtal och a -nästan primtal är a -nästan primtal.
  • A -nästan primtal kan inte ha ett -nästan primtal som en faktor för alla .

externa länkar