Kantellerade 6-kuber

6-cube t0.svg
6-kub
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t02.svg
Kantellerad 6-kub
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t13.svg
Bikantellerad 6-kub
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t5.svg
6-ortoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t35.svg
Kantellerad 6-ortoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t24.svg
Bikantellerad 6-ortoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-cube t012.svg
Cantitruncerad 6-kub
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t123.svg
Bicantitruncerad 6-kub
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t234.svg
Bicantitruncated 6-ortoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-cube t345.svg
Cantitruncated 6-ortoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Ortogonala projektioner i B 6 Coxeter-plan

I sexdimensionell geometri är en kantellerad 6-kub en konvex enhetlig 6-polytop , som är en kantellation av den vanliga 6-kuben .

Det finns 8 kantelleringar för 6-kuben, inklusive trunkering. Hälften av dem är lättare att konstruera från det dubbla 5-ortoplexet .

Kantellerad 6-kub

Kantellerad 6-kub
Typ enhetlig 6-polytop
Schläfli symbol
rr{4,3,3,3,3} eller
Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel split1-43.pngCDel nodes 11.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
5-faces
4-faces
Cells
Faces
Kanter 4800
Vertices 960
Vertex figur
Coxeter grupper B 6 , [3,3,3,3,4]
Egenskaper konvex

Alternativa namn

  • Kantellerad hexeract
  • Liten romberad hexeract (akronym: srox) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t02.svg 6-cube t02 B5.svg 6-cube t02 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t02 B3.svg 6-cube t02 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t02 A5.svg 6-cube t02 A3.svg
Dihedral symmetri [6] [4]

Bikantellerad 6-kub

Kantellerad 6-kub
Typ enhetlig 6-polytop
Schläfli symbol
2rr{4,3,3,3,3} eller
Coxeter-Dynkin-diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 4a3b.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
5-ansikter
4-ansikter
Celler
Ansikter
Kanter
Vertices
Vertex figur
Coxeter grupper B 6 , [3,3,3,3,4]
Egenskaper konvex

Alternativa namn

  • Bikantellerad hexerakt
  • Liten birhomberad hexeract (akronym: saborx) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t13.svg 6-cube t13 B5.svg 6-cube t13 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t13 B3.svg 6-cube t13 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t13 A5.svg 6-cube t13 A3.svg
Dihedral symmetri [6] [4]

Cantitruncated 6-kub

Kantellerad 6-kub
Typ enhetlig 6-polytop
Schläfli symbol
tr{4,3,3,3,3} eller
Coxeter-Dynkin-diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel split1-43.pngCDel nodes 11.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
5-ansikter
4-ansikter
Celler
Ansikter
Kanter
Vertices
Vertex figur
Coxeter grupper B 6 , [3,3,3,3,4]
Egenskaper konvex

Alternativa namn

  • Cantitruncated hexeract
  • Great rhombihexeract (akronym: grox) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t012.svg 6-cube t012 B5.svg 6-cube t012 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t012 B3.svg 6-cube t012 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t012 A5.svg 6-cube t012 A3.svg
Dihedral symmetri [6] [4]

Det är fjärde i en serie av cantitruncated hyperkuber:

Petrie polygonprojektioner
3-cube t012.svg4-cube t012 B2.svg 4-cube t012.svg4-cube t012 A3.svg 5-cube t012.svg5-cube t012 A3.svg 6-cube t012.svg6-cube t012 A5.svg 7-cube t012.svg7-cube t012 A5.svg 8-cube t012.svg8-cube t012 A7.svg
Stympad cuboctahedron Cantitruncated tesseract Cantitruncated 5-kub Cantitruncated 6-kub Cantitruncated 7-kub Cantitruncerad 8-kub
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Bicantitruncerad 6-kub

Kantellerad 6-kub
Typ enhetlig 6-polytop
Schläfli symbol
2tr{4,3,3,3,3} eller
Coxeter-Dynkin-diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 4a3b.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
5-ansikter
4-ansikter
Celler
Ansikter
Kanter
Vertices
Vertex figur
Coxeter grupper B 6 , [3,3,3,3,4]
Egenskaper konvex

Alternativa namn

  • Bicantitruncated hexeract
  • Great birhombihexeract (akronym: gaborx) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t123.svg 6-cube t123 B5.svg 6-cube t123 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t123 B3.svg 6-cube t123 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t123 A5.svg 6-cube t123 A3.svg
Dihedral symmetri [6] [4]

Besläktade polytoper

Dessa polytoper är en del av en uppsättning av 63 enhetliga 6-polytoper genererade från B 6 Coxeter-planet , inklusive den vanliga 6-kuben eller 6-ortoplexen .

B6 polytoper
6-cube t5.svg
β 6
6-cube t4.svg
t 1 β 6
6-cube t3.svg
t 2 β 6
6-cube t2.svg
t 2 y 6
6-cube t1.svg
t 1 y 6
6-cube t0.svg
γ 6
6-cube t45.svg
t 0,1 β 6
6-cube t35.svg
t 0,2 β 6
6-cube t34.svg
t 1,2 β 6
6-cube t25.svg
t 0,3 β 6
6-cube t24.svg
t 1,3 β 6
6-cube t23.svg
t 2,3 y 6
6-cube t15.svg
t 0,4 β 6
6-cube t14.svg
t 1,4 y 6
6-cube t13.svg
t 1,3 y 6
6-cube t12.svg
t 1,2 y 6
6-cube t05.svg
t 0,5 y 6
6-cube t04.svg
t 0,4 y 6
6-cube t03.svg
t 0,3 y 6
6-cube t02.svg
t 0,2 y 6
6-cube t01.svg
t 0,1 y 6
6-cube t345.svg
t 0,1,2 P6 _
6-cube t245.svg
t 0,1,3 P6 _
6-cube t235.svg
t 0,2,3 P6 _
6-cube t234.svg
t 1,2,3 P6 _
6-cube t145.svg
t 0,1,4 P6 _
6-cube t135.svg
t 0,2,4 P6 _
6-cube t134.svg
t 1,2,4 β 6
6-cube t125.svg
t 0,3,4 P6 _
6-cube t124.svg
t 1,2,4 y 6
6-cube t123.svg
t 1,2,3 y 6
6-cube t045.svg
t 0,1,5 p6 _
6-cube t035.svg
t 0,2,5 β 6
6-cube t034.svg
t 0,3,4 y 6
6-cube t025.svg
t 0,2,5 y 6
6-cube t024.svg
t 0,2,4 y 6
6-cube t023.svg
t 0,2,3 y 6
6-cube t015.svg
t 0,1,5 y 6
6-cube t014.svg
t 0,1,4 y 6
6-cube t013.svg
t 0,1,3 y 6
6-cube t012.svg
t 0,1,2 y 6
6-cube t2345.svg
t 0,1,2,3 P6 _
6-cube t1345.svg
t 0,1,2,4 P6 _
6-cube t1245.svg
t 0,1,3,4 P6 _
6-cube t1235.svg
t 0,2,3,4 P6 _
6-cube t1234.svg
t 1,2,3,4 y 6
6-cube t0345.svg
t 0,1,2,5 p6 _
6-cube t0245.svg
t 0,1,3,5 β 6
6-cube t0235.svg
t 0,2,3,5 y 6
6-cube t0234.svg
t 0,2,3,4 y 6
6-cube t0145.svg
t 0,1,4,5 y 6
6-cube t0135.svg
t 0,1,3,5 y 6
6-cube t0134.svg
t 0,1,3,4 y 6
6-cube t0125.svg
t 0,1,2,5 y 6
6-cube t0124.svg
t 0,1,2,4 y 6
6-cube t0123.svg
t 0,1,2,3 y 6
6-cube t12345.svg
t 0,1,2,3,4 β 6
6-cube t02345.svg
t 0,1,2,3,5 β6 _
6-cube t01345.svg
t 0,1,2,4,5 β6 _
6-cube t01245.svg
t 0,1,2,4,5 y 6
6-cube t01235.svg
t 0,1,2,3,5 y 6
6-cube t01234.svg
t 0,1,2,3,4 y 6
6-cube t012345.svg
t 0,1,2,3,4,5 y 6

Anteckningar

  • HSM Coxeter :
    • HSM Coxeter, Regular Polytopes , 3:e upplagan, Dover New York, 1973
    •   Kaleidoscopes: Selected Writings of HSM Coxeter , redigerad av F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Papper 22) HSM Coxeter, Regular and Semi Regular Polytopes I , [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Papper 23) HSM Coxeter, Regular and Semi-Regular Polytopes II , [Math. Zeit. 188 (1985) 559-591]
      • (Papper 24) HSM Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes , Manuscript (1991)
    • NW Johnson: Theory of Uniform Polytopes and Honeycombs , Ph.D.
  • Klitzing, Richard. "6D enhetliga polytoper (polypeta)" . o3o3o3x3o4x - srox, o3o3x3o3x4o - saborx, o3o3o3x3x4x - grox, o3o3x3x3x4o - gaborx

externa länkar

Familj A n B n I 2 (p) / D n E 6 / E 7 / E 8 / F 4 / G 2 H n
Vanlig polygon Triangel Fyrkant p-gon Sexhörning Pentagon
Uniform polyeder Tetraeder Oktaeder Kub Demicube Dodekaeder Ikosaeder
Uniform polychoron Pentachoron 16-celler Tesseract Demitesseract 24-celler 120-celler 600-celler
Uniform 5-polytop 5-simplex 5-ortoplex 5-kub 5-demikub
Uniform 6-polytop 6-simplex 6-ortoplex 6-kub 6-demikub 1 22 2 21
Uniform 7-polytop 7-simplex 7-ortoplex 7-kub 7-demikub 1 32 2 31 3 21
Uniform 8-polytop 8-simplex 8-ortoplex 8-kub 8-demikub 1 42 2 41 4 21
Uniform 9-polytop 9-simplex 9-ortoplex 9-kub 9-demikub
Uniform 10-polytop 10-simplex 10-ortoplex 10-kub 10-demikub
Uniform n - polytop n - simplex n - ortoplex n - kub n - demikub 1 k2 2 k1 k 21 n - femkantig polytop
Ämnen: Polytopfamiljer Vanlig polytop Lista över vanliga polytoper och sammansättningar