Kantellerade 6-ortoplexer

6-cube t5.svg
6-ortoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t35.svg
Kantellerad 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t24.svg
Bikantellerad 6-ortoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t0.svg
6-kub
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t02.svg
Kantellerad 6-kub
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t13.svg
Bikantellerad 6-kub
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
6-cube t345.svg
Cantitruncated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t234.svg
Bicantitruncated 6-ortoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t123.svg
Bicantitruncerad 6-kub
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
6-cube t0123.svg
Cantitruncerad 6-kub
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Ortogonala projektioner i B 6 Coxeter-plan

I sexdimensionell geometri är en kantellerad 6-ortoplex en konvex enhetlig 6-polytop , som är en kantellation av den vanliga 6-ortoplexen .

Det finns 8 kantelleringar för 6-ortoplexet inklusive trunkering. Hälften av dem är lättare att konstruera från den dubbla 5-kuben

Kantellerad 6-ortoplex

Kantellerad 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol
t 0,2 {3,3,3,3,4} rr{3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png=CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split5c.pngCDel nodes 01l.png

5-ansikten 136
4-ansikten 1656
Celler 5040
Ansikten 6400
Kanter 3360
Vertices 480
Vertex figur
Coxeter grupper
B 6 , [3,3,3,3,4] D 6 , [3 3,1,1 ]
Egenskaper konvex

Alternativa namn

  • Kantellerad hexacross
  • Liten romberad hexacontatetrapeton (akronym: srog) (Jonathan Bowers)

Konstruktion

Det finns två Coxeter-grupper associerade med det kantellerade 6-ortoplexet , en med B 6 eller [4,3,3,3,3] Coxeter-gruppen, och en lägre symmetri med D 6 eller [3 3,1,1 ] Coxeter grupp.

Koordinater

Kartesiska koordinater för de 480 hörnen av ett kantellerat 6-ortoplex, centrerat vid origo, är alla tecken och koordinatpermutationer för

(2,1,1,0,0,0)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t35.svg 6-cube t35 B5.svg 6-cube t35 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t35 B3.svg 6-cube t35 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t35 A5.svg 6-cube t35 A3.svg
Dihedral symmetri [6] [4]

Bikantellerad 6-ortoplex

Bikantellerad 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol
t 1,3 {3,3,3,3,4} 2rr{3,3,3,3,4}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png

5-faces
4-faces
Cells
Faces
Kanter 8640
Vertices 1440
Vertex figur
Coxeter grupper
B 6 , [3,3,3,3,4] D 6 , [3 3,1,1 ]
Egenskaper konvex

Alternativa namn

  • Bikantellerad hexacross, bikantellerad hexakontatetrapeton
  • Liten birhomberad hexacontatetrapeton (akronym: siborg) (Jonathan Bowers)

Konstruktion

Det finns två Coxeter-grupper associerade med det bikantellerade 6-ortoplexet , en med B 6- eller [4,3,3,3,3]-Coxeter-gruppen, och en lägre symmetri med D 6 eller [3 3,1,1 ] Coxeter grupp.

Koordinater

Kartesiska koordinater för de 1440 hörnen av ett tvåkantellt 6-ortoplex, centrerat vid origo, är alla tecken och koordinatpermutationer för

(2,2,1,1,0,0)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t24.svg 6-cube t24 B5.svg 6-cube t24 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t24 B3.svg 6-cube t24 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t24 A5.svg 6-cube t24 A3.svg
Dihedral symmetri [6] [4]

Cantitruncated 6-ortoplex

Cantitruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol
t 0,1,2 {3,3,3,3,4} tr{3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

5-faces
4-faces
Cells
Faces
Kanter 3840
Vertices 960
Vertex figur
Coxeter grupper
B 6 , [3,3,3,3,4] D 6 , [3 3,1,1 ]
Egenskaper konvex

Alternativa namn

  • Cantitruncated hexacross, cantitruncated hexacontatetrapeton
  • Great rhombihexacontatetrapeton (akronym: grog) (Jonathan Bowers)

Konstruktion

Det finns två Coxeter-grupper associerade med det cantitruncerade 6-ortoplexet , en med B 6 eller [4,3,3,3,3] Coxeter-gruppen, och en lägre symmetri med D 6 eller [3 3,1,1 ] Coxeter grupp.

Koordinater

Kartesiska koordinater för de 960 hörnen av ett kantitrunkerat 6-ortoplex, centrerat vid origo, är alla tecken och koordinatpermutationer för

(3,2,1,0,0,0)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t345.svg 6-cube t345 B5.svg 6-cube t345 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t345 B3.svg 6-cube t345 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t345 A5.svg 6-cube t345 A3.svg
Dihedral symmetri [6] [4]

Bicantitruncated 6-ortoplex

Bicantitruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol
t 1,2,3 {3,3,3,3,4} 2tr{3,3,3,3,4}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png

5-faces
4-faces
Cells
Faces
Kanter 10080
Vertices 2880
Vertex figur
Coxeter grupper
B 6 , [3,3,3,3,4] D 6 , [3 3,1,1 ]
Egenskaper konvex

Alternativa namn

  • Bicantitruncated hexacross, biicantitruncated hexacontatetrapeton
  • Great birhombihexacontatetrapeton (akronym: gaborg) (Jonathan Bowers)

Konstruktion

Det finns två Coxeter-grupper som är associerade med det bikantitrunkerade 6-ortoplexet , en med B 6- eller [4,3,3,3,3]-Coxeter-gruppen, och en lägre symmetri med D 6 eller [3 3,1,1 ] Coxeter grupp.

Koordinater

Kartesiska koordinater för de 2880 hörnen av ett bikantintrunkerat 6-ortoplex, centrerat vid ursprunget, är alla tecken och koordinatpermutationer för

(3,3,2,1,0,0)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t234.svg 6-cube t234 B5.svg 6-cube t234 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t234 B3.svg 6-cube t234 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t234 A5.svg 6-cube t234 A3.svg
Dihedral symmetri [6] [4]

Besläktade polytoper

Dessa polytoper är en del av en uppsättning av 63 enhetliga 6-polytoper genererade från B 6 Coxeter-planet , inklusive den vanliga 6-kuben eller 6-ortoplexen .

B6 polytoper
6-cube t5.svg
β 6
6-cube t4.svg
t 1 β 6
6-cube t3.svg
t 2 β 6
6-cube t2.svg
t 2 y 6
6-cube t1.svg
t 1 y 6
6-cube t0.svg
γ 6
6-cube t45.svg
t 0,1 β 6
6-cube t35.svg
t 0,2 β 6
6-cube t34.svg
t 1,2 β 6
6-cube t25.svg
t 0,3 β 6
6-cube t24.svg
t 1,3 β 6
6-cube t23.svg
t 2,3 y 6
6-cube t15.svg
t 0,4 β 6
6-cube t14.svg
t 1,4 y 6
6-cube t13.svg
t 1,3 y 6
6-cube t12.svg
t 1,2 y 6
6-cube t05.svg
t 0,5 y 6
6-cube t04.svg
t 0,4 y 6
6-cube t03.svg
t 0,3 y 6
6-cube t02.svg
t 0,2 y 6
6-cube t01.svg
t 0,1 y 6
6-cube t345.svg
t 0,1,2 P6 _
6-cube t245.svg
t 0,1,3 P6 _
6-cube t235.svg
t 0,2,3 P6 _
6-cube t234.svg
t 1,2,3 P6 _
6-cube t145.svg
t 0,1,4 P6 _
6-cube t135.svg
t 0,2,4 P6 _
6-cube t134.svg
t 1,2,4 β 6
6-cube t125.svg
t 0,3,4 P6 _
6-cube t124.svg
t 1,2,4 y 6
6-cube t123.svg
t 1,2,3 y 6
6-cube t045.svg
t 0,1,5 p6 _
6-cube t035.svg
t 0,2,5 β 6
6-cube t034.svg
t 0,3,4 y 6
6-cube t025.svg
t 0,2,5 y 6
6-cube t024.svg
t 0,2,4 y 6
6-cube t023.svg
t 0,2,3 y 6
6-cube t015.svg
t 0,1,5 y 6
6-cube t014.svg
t 0,1,4 y 6
6-cube t013.svg
t 0,1,3 y 6
6-cube t012.svg
t 0,1,2 y 6
6-cube t2345.svg
t 0,1,2,3 P6 _
6-cube t1345.svg
t 0,1,2,4 P6 _
6-cube t1245.svg
t 0,1,3,4 P6 _
6-cube t1235.svg
t 0,2,3,4 P6 _
6-cube t1234.svg
t 1,2,3,4 y 6
6-cube t0345.svg
t 0,1,2,5 p6 _
6-cube t0245.svg
t 0,1,3,5 β 6
6-cube t0235.svg
t 0,2,3,5 y 6
6-cube t0234.svg
t 0,2,3,4 y 6
6-cube t0145.svg
t 0,1,4,5 y 6
6-cube t0135.svg
t 0,1,3,5 y 6
6-cube t0134.svg
t 0,1,3,4 y 6
6-cube t0125.svg
t 0,1,2,5 y 6
6-cube t0124.svg
t 0,1,2,4 y 6
6-cube t0123.svg
t 0,1,2,3 y 6
6-cube t12345.svg
t 0,1,2,3,4 β 6
6-cube t02345.svg
t 0,1,2,3,5 β6 _
6-cube t01345.svg
t 0,1,2,4,5 β6 _
6-cube t01245.svg
t 0,1,2,4,5 y 6
6-cube t01235.svg
t 0,1,2,3,5 y 6
6-cube t01234.svg
t 0,1,2,3,4 y 6
6-cube t012345.svg
t 0,1,2,3,4,5 y 6

Anteckningar

  • HSM Coxeter :
    • HSM Coxeter, Regular Polytopes , 3:e upplagan, Dover New York, 1973
    •   Kaleidoscopes: Selected Writings of HSM Coxeter , redigerad av F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Papper 22) HSM Coxeter, Regular and Semi Regular Polytopes I , [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Papper 23) HSM Coxeter, Regular and Semi-Regular Polytopes II , [Math. Zeit. 188 (1985) 559-591]
      • (Papper 24) HSM Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes , Manuscript (1991)
    • NW Johnson: Theory of Uniform Polytopes and Honeycombs , Ph.D.
  • Klitzing, Richard. "6D enhetliga polytoper (polypeta)" . x3o3x3o3o4o - srog, o3x3o3x3o4o - siborg, x3x3x3o3o4o - grog, o3x3x3x3o4o - gaborg

externa länkar

Familj A n B n I 2 (p) / D n E 6 / E 7 / E 8 / F 4 / G 2 H n
Vanlig polygon Triangel Fyrkant p-gon Sexhörning Pentagon
Uniform polyeder Tetraeder Oktaeder Kub Demicube Dodekaeder Ikosaeder
Uniform polychoron Pentachoron 16-celler Tesseract Demitesseract 24-celler 120-celler 600-celler
Uniform 5-polytop 5-simplex 5-ortoplex 5-kub 5-demikub
Uniform 6-polytop 6-simplex 6-ortoplex 6-kub 6-demikub 1 22 2 21
Uniform 7-polytop 7-simplex 7-ortoplex 7-kub 7-demikub 1 32 2 31 3 21
Uniform 8-polytop 8-simplex 8-ortoplex 8-kub 8-demikub 1 42 2 41 4 21
Uniform 9-polytop 9-simplex 9-ortoplex 9-kub 9-demikub
Uniform 10-polytop 10-simplex 10-ortoplex 10-kub 10-demikub
Uniform n - polytop n - simplex n - ortoplex n - kub n - demikub 1 k2 2 k1 k 21 n - femkantig polytop
Ämnen: Polytopfamiljer Vanlig polytop Lista över vanliga polytoper och sammansättningar