Pentellerade 6-ortoplexer

Ortogonala projektioner i B 6 Coxeter-plan
6-cube t0.svg
6-ortoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t05.svg

Pentellerad 6-ortoplex Pentellerad 6-kub
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t5.svg
6-kub
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t045.svg
Pentitruncated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t035.svg
Penticantellated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0345.svg
Penticantitruncated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0245.svg
Pentiruncruncated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0235.svg
Pentiruncikantellerad 6-kub
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t02345.svg
Pentiruncicanantitruncated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0145.svg
Pentisteritrunkerad 6-kub
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
6-cube t01345.svg
Pentistericantitruncated 6-ortoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
6-cube t012345.svg

Pentisteriruncicanantitruncated 6-ortoplex ( Omnitruncated 6-cube )
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png

I sexdimensionell geometri är en pentellerad 6-ortoplex en konvex enhetlig 6-polytop med femte ordningens trunkationer av det vanliga 6-ortoplexet .

Det finns unika 16 grader av pentellationer av 6-ortoplexet med permutationer av trunkationer, kantellationer, runcinationer och sterikationer. Tio visas, med de andra 6 lättare konstruerade som en pentellerad 6-kub . Den enkla pentellerade 6-ortoplexen (samma som pentellerade 5-kuber) kallas också en expanderad 6-ortoplex, konstruerad av en expansionsoperation som tillämpas på den vanliga 6-ortoplexen . Den högsta formen, pentisteriruncicantitruncated 6-ortoplex , kallas ett omnitruncated 6-ortoplex med alla noder ringade.

Pentitruncated 6-ortoplex

Pentitruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol t 0,1,5 {3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Kanter 8640
Vertices 1920
Vertex figur
Coxeter grupper B 6 , [4,3,3,3,3]
Egenskaper konvex

Alternativa namn

  • Teritruncated hexacontatetrapeton (Akronym: tacox) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t015.svg 6-cube t015 B5.svg 6-cube t015 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t015 B3.svg 6-cube t015 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t015 A5.svg 6-cube t015 A3.svg
Dihedral symmetri [6] [4]

Pentikantellerad 6-ortoplex

Pentikantellerad 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol t 0,2,5 {3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Kanter 21120
Vertices 3840
Vertex figur
Coxeter grupper B 6 , [4,3,3,3,3]
Egenskaper konvex

Alternativa namn

  • Terirhombated hexacontitetrapeton (Akronym: tapox) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t035.svg 6-cube t035 B5.svg 6-cube t035 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t035 B3.svg 6-cube t035 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t035 A5.svg 6-cube t035 A3.svg
Dihedral symmetri [6] [4]

Penticantitruncated 6-ortoplex

Penticantitruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol t 0,1,2,5 {3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Kanter 30720
Vertices 7680
Vertex figur
Coxeter grupper B 6 , [4,3,3,3,3]
Egenskaper konvex

Alternativa namn

  • Terigreatorhombated hexacontitetrapeton (Akronym: togrig) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t0345.svg 6-cube t0345 B5.svg 6-cube t0345 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t0345 B3.svg 6-cube t0345 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t0345 A5.svg 6-cube t0345 A3.svg
Dihedral symmetri [6] [4]

Pentiruncruncated 6-ortoplex

Pentiruncruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol t 0,1,3,5 {3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Kanter 51840
Vertices 11520
Vertex figur
Coxeter grupper B 6 , [4,3,3,3,3]
Egenskaper konvex

Alternativa namn

  • Teriprismatotruncated hexacontitetrapeton (Akronym: tocrax) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t0135.svg 6-cube t0135 B5.svg 6-cube t0135 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t0135 B3.svg 6-cube t0135 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t0135 A5.svg 6-cube t0135 A3.svg
Dihedral symmetri [6] [4]

Pentiruncicanantitruncated 6-ortoplex

Pentiruncicanantitruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol t 0,1,2,3,5 {3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Kanter 80640
Vertices 23040
Vertex figur
Coxeter grupper B 6 , [4,3,3,3,3]
Egenskaper konvex

Alternativa namn

  • Terigreatoprismaterad hexacontitetrapeton (Akronym: tagpog) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t01345.svg 6-cube t01345 B5.svg 6-cube t01345 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t01345 B3.svg 6-cube t01345 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t01345 A5.svg 6-cube t01345 A3.svg
Dihedral symmetri [6] [4]

Pentistericantitruncated 6-ortoplex

Pentistericantitruncated 6-ortoplex
Typ enhetlig 6-polytop
Schläfli symbol t 0,1,2,4,5 {3,3,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Kanter 80640
Vertices 23040
Vertex figur
Coxeter grupper B 6 , [4,3,3,3,3]
Egenskaper konvex

Alternativa namn

  • Tericelligreatorhombated hexacontitetrapeton (Akronym: tecagorg) (Jonathan Bowers)

Bilder

ortografiska projektioner
Coxeter plan B 6 B 5 B 4
Graf 6-cube t01345.svg 6-cube t01345 B5.svg 6-cube t01345 B4.svg
Dihedral symmetri [12] [10] [8]
Coxeter plan B 3 B 2
Graf 6-cube t01345 B3.svg 6-cube t01345 B2.svg
Dihedral symmetri [6] [4]
Coxeter plan En 5 A 3
Graf 6-cube t01345 A5.svg 6-cube t01345 A3.svg
Dihedral symmetri [6] [4]


Besläktade polytoper

Dessa polytoper är från en uppsättning av 63 enhetliga 6-polytoper genererade från B 6 Coxeter-planet , inklusive den vanliga 6-kuben eller 6-ortoplexen .

B6 polytoper
6-cube t5.svg
β 6
6-cube t4.svg
t 1 β 6
6-cube t3.svg
t 2 β 6
6-cube t2.svg
t 2 y 6
6-cube t1.svg
t 1 y 6
6-cube t0.svg
γ 6
6-cube t45.svg
t 0,1 β 6
6-cube t35.svg
t 0,2 β 6
6-cube t34.svg
t 1,2 β 6
6-cube t25.svg
t 0,3 β 6
6-cube t24.svg
t 1,3 β 6
6-cube t23.svg
t 2,3 y 6
6-cube t15.svg
t 0,4 β 6
6-cube t14.svg
t 1,4 y 6
6-cube t13.svg
t 1,3 y 6
6-cube t12.svg
t 1,2 y 6
6-cube t05.svg
t 0,5 y 6
6-cube t04.svg
t 0,4 y 6
6-cube t03.svg
t 0,3 y 6
6-cube t02.svg
t 0,2 y 6
6-cube t01.svg
t 0,1 y 6
6-cube t345.svg
t 0,1,2 P6 _
6-cube t245.svg
t 0,1,3 P6 _
6-cube t235.svg
t 0,2,3 p6 _
6-cube t234.svg
t 1,2,3 β 6
6-cube t145.svg
t 0,1,4 P6 _
6-cube t135.svg
t 0,2,4 P6 _
6-cube t134.svg
t 1,2,4 P6 _
6-cube t125.svg
t 0,3,4 P6 _
6-cube t124.svg
t 1,2,4 y 6
6-cube t123.svg
t 1,2,3 y 6
6-cube t045.svg
t 0,1,5 β 6
6-cube t035.svg
t 0,2,5 β 6
6-cube t034.svg
t 0,3,4 y 6
6-cube t025.svg
t 0,2,5 y 6
6-cube t024.svg
t 0,2,4 y 6
6-cube t023.svg
t 0,2,3 y 6
6-cube t015.svg
t 0,1,5 y 6
6-cube t014.svg
t 0,1,4 y 6
6-cube t013.svg
t 0,1,3 y 6
6-cube t012.svg
t 0,1,2 y 6
6-cube t2345.svg
t 0,1,2,3 P6 _
6-cube t1345.svg
t 0,1,2,4 P6 _
6-cube t1245.svg
t 0,1,3,4 P6 _
6-cube t1235.svg
t 0,2,3,4 P6 _
6-cube t1234.svg
t 1,2,3,4 y 6
6-cube t0345.svg
t 0,1,2,5 p6 _
6-cube t0245.svg
t 0,1,3,5 β 6
6-cube t0235.svg
t 0,2,3,5 y 6
6-cube t0234.svg
t 0,2,3,4 y 6
6-cube t0145.svg
t 0,1,4,5 y 6
6-cube t0135.svg
t 0,1,3,5 y 6
6-cube t0134.svg
t 0,1,3,4 y 6
6-cube t0125.svg
t 0,1,2,5 y 6
6-cube t0124.svg
t 0,1,2,4 y 6
6-cube t0123.svg
t 0,1,2,3 y 6
6-cube t12345.svg
t 0,1,2,3,4 β 6
6-cube t02345.svg
t 0,1,2,3,5 β6 _
6-cube t01345.svg
t 0,1,2,4,5 β6 _
6-cube t01245.svg
t 0,1,2,4,5 y 6
6-cube t01235.svg
t 0,1,2,3,5 y 6
6-cube t01234.svg
t 0,1,2,3,4 y 6
6-cube t012345.svg
t 0,1,2,3,4,5 y 6

Anteckningar

  • HSM Coxeter :
    • HSM Coxeter, Regular Polytopes , 3:e upplagan, Dover New York, 1973
    •   Kaleidoscopes: Selected Writings of HSM Coxeter , redigerad av F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Papper 22) HSM Coxeter, Regular and Semi Regular Polytopes I , [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Papper 23) HSM Coxeter, Regular and Semi-Regular Polytopes II , [Math. Zeit. 188 (1985) 559-591]
      • (Papper 24) HSM Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes , Manuscript (1991)
    • NW Johnson: Theory of Uniform Polytopes and Honeycombs , Ph.D.
  • Klitzing, Richard. "6D enhetliga polytoper (polypeta)" . x4o3o3o3x3x - tacox, x4o3o3x3o3x - tapox, x4o3o3x3x3x - togrig, x4o3x3o3x3x - tocrax, x4x3o3x3x3x - tagpog, x4x3o3x3x3x - tecagorg

externa länkar

Familj A n B n I 2 (p) / D n E 6 / E 7 / E 8 / F 4 / G 2 H n
Vanlig polygon Triangel Fyrkant p-gon Sexhörning Pentagon
Uniform polyeder Tetraeder Oktaeder Kub Demicube Dodekaeder Ikosaeder
Uniform polychoron Pentachoron 16-celler Tesseract Demitesseract 24-celler 120-celler 600-celler
Uniform 5-polytop 5-simplex 5-ortoplex 5-kub 5-demikub
Uniform 6-polytop 6-simplex 6-ortoplex 6-kub 6-demikub 1 22 2 21
Uniform 7-polytop 7-simplex 7-ortoplex 7-kub 7-demikub 1 32 2 31 3 21
Uniform 8-polytop 8-simplex 8-ortoplex 8-kub 8-demikub 1 42 2 41 4 21
Uniform 9-polytop 9-simplex 9-ortoplex 9-kub 9-demikub
Uniform 10-polytop 10-simplex 10-ortoplex 10-kub 10-demikub
Uniform n - polytop n - simplex n - ortoplex n - kub n - demikub 1 k2 2 k1 k 21 n - femkantig polytop
Ämnen: Polytopfamiljer Vanlig polytop Lista över vanliga polytoper och sammansättningar