Normalt element

I matematik är ett element x i en *-algebra normalt om det uppfyller

Denna definition härrör från definitionen av en normal linjär operator i funktionsanalys , där en linjär operator A från ett Hilbert-rum in i sig själv kallas unitär om där adjointen för A är A och domänen för A är densamma som A . Se normal operatör för en detaljerad diskussion. Om Hilbert-rummet är ändligt dimensionellt och en ortonormal bas har valts, så är operatorn A normal om och endast om matrisen som beskriver A med avseende på denna bas är en normal matris .

Se även

  • Reed, M .; Simon, B. (1972). Metoder för matematisk fysik . Vol 2. Academic Press.
  • Teschl, G. (2009). Matematiska metoder i kvantmekanik; Med applikationer till Schrödinger-operatörer . Providence: American Mathematical Society.
  •    Schaefer, Helmut H. ; Wolff, Manfred P. (1999). Topologiska vektorutrymmen . GTM . Vol. 8 (andra upplagan). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0 . OCLC 840278135 .