D 6 polytop

Ortografiska projektioner i D 6 Coxeter-planet
6-demicube t0 D6.svg
6-demikub
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t5 B5.svg
6-ortoplex
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

I 6-dimensionell geometri finns det 47 enhetliga polytoper med D 6- symmetri, varav 16 är unika och 31 delas med B 6 -symmetri. Det finns två vanliga former, 6-ortoplex och 6-demikub med 12 respektive 32 hörn.

De kan visualiseras som symmetriska ortografiska projektioner i Coxeter-plan i D 6 Coxeter-gruppen och andra undergrupper.

Grafer

Symmetriska ortografiska projektioner av dessa 16 polytoper kan göras i D 6 , D 5 , D 4 , D 3 , A 5 , A 3 , Coxeter planen . A k har [k+1] symmetri, Dk har [ 2(k-1)] symmetri. B 6 ingår också även om bara hälften av dess [12] symmetri finns i dessa polytoper.

Dessa 16 polytoper visas var och en i dessa 7 symmetriplan, med hörn och kanter ritade, och hörn färgade av antalet överlappande hörn i varje projektiv position.

# Coxeter plan grafer
Coxeter diagram Namn

B 6 [12/2]

D 6 [10]

D 5 [8]

D 4 [6]

D 3 [4]

A 5 [6]

A 3 [4]
1 6-demicube t0 B6.svg 6-demicube t0 D6.svg 6-demicube t0 D5.svg 6-demicube t0 D4.svg 6-demicube t0 D3.svg 6-demicube t0 A5.svg 6-demicube t0 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= 6-demikub Hemihexeract (hax)
2 6-demicube t01 B6.svg 6-demicube t01 D6.svg 6-demicube t01 D5.svg 6-demicube t01 D4.svg 6-demicube t01 D3.svg 6-demicube t01 A5.svg 6-demicube t01 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= cantic 6-kub Trunkated hemihexeract (thax)
3 6-demicube t02 B6.svg 6-demicube t02 D6.svg 6-demicube t02 D5.svg 6-demicube t02 D4.svg 6-demicube t02 D3.svg 6-demicube t02 A5.svg 6-demicube t02 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= runkisk 6-kub Liten romberad hemihexeract (sirhax)
4 6-demicube t03 B6.svg 6-demicube t03 D6.svg 6-demicube t03 D5.svg 6-demicube t03 D4.svg 6-demicube t03 D3.svg 6-demicube t03 A5.svg 6-demicube t03 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= sterisk 6-kub liten prismatad hemihexeract (sophax)
5 6-demicube t04 B6.svg 6-demicube t04 D6.svg 6-demicube t04 D5.svg 6-demicube t04 D4.svg 6-demicube t04 D3.svg 6-demicube t04 A5.svg 6-demicube t04 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= pentisk 6-kub Liten cellad demihexeract (sochax)
6 6-demicube t012 B6.svg 6-demicube t012 D6.svg 6-demicube t012 D5.svg 6-demicube t012 D4.svg 6-demicube t012 D3.svg 6-demicube t012 A5.svg 6-demicube t012 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= runcicantic 6-kub Stor romberad hemihexeract (girhax)
7 6-demicube t013 B6.svg 6-demicube t013 D6.svg 6-demicube t013 D5.svg 6-demicube t013 D4.svg 6-demicube t013 D3.svg 6-demicube t013 A5.svg 6-demicube t013 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= sterikantisk 6-kub Prismatotruncated hemihexeract (pitax)
8 6-demicube t023 B6.svg 6-demicube t023 D6.svg 6-demicube t023 D5.svg 6-demicube t023 D4.svg 6-demicube t023 D3.svg 6-demicube t023 A5.svg 6-demicube t023 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= steriruncic 6-kub Prismatorhombated hemihexeract (prohax)
9 6-demicube t014 B6.svg 6-demicube t014 D6.svg 6-demicube t014 D5.svg 6-demicube t014 D4.svg 6-demicube t014 D3.svg 6-demicube t014 A5.svg 6-demicube t014 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Stericantic 6-kuber Cellitruncated hemihexeract (cathix)
10 6-demicube t024 B6.svg 6-demicube t024 D6.svg 6-demicube t024 D5.svg 6-demicube t024 D4.svg 6-demicube t024 D3.svg 6-demicube t024 A5.svg 6-demicube t024 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Pentiruncic 6-kuber Cellirhombated hemihexeract (crohax)
11 6-demicube t034 B6.svg 6-demicube t034 D6.svg 6-demicube t034 D5.svg 6-demicube t034 D4.svg 6-demicube t034 D3.svg 6-demicube t034 A5.svg 6-demicube t034 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Pentisterisk 6-kub celliprismatad hemihexeract (cophix)
12 6-demicube t0123 B6.svg 6-demicube t0123 D6.svg 6-demicube t0123 D5.svg 6-demicube t0123 D4.svg 6-demicube t0123 D3.svg 6-demicube t0123 A5.svg 6-demicube t0123 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= Steriruncicantic 6-kub Stor prismatad hemihexeract (gophax)
13 6-demicube t0124 B6.svg 6-demicube t0124 D6.svg 6-demicube t0124 D5.svg 6-demicube t0124 D4.svg 6-demicube t0124 D3.svg 6-demicube t0124 A5.svg 6-demicube t0124 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Pentiruncicantic 6-kuber Celligreatorhombated hemihexeract (cagrohax)
14 6-demicube t0134 B6.svg 6-demicube t0134 D6.svg 6-demicube t0134 D5.svg 6-demicube t0134 D4.svg 6-demicube t0134 D3.svg 6-demicube t0134 A5.svg 6-demicube t0134 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

= Pentistericantic 6-kuber Celliprismatotruncated hemihexeract (capthix)
15 6-demicube t0234 B6.svg 6-demicube t0234 D6.svg 6-demicube t0234 D5.svg 6-demicube t0234 D4.svg 6-demicube t0234 D3.svg 6-demicube t0234 A5.svg 6-demicube t0234 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

= Pentisteriruncic 6-kub celliprismatorhomberad hemihexeract (caprohax)
16 6-demicube t01234 B6.svg 6-demicube t01234 D6.svg 6-demicube t01234 D5.svg 6-demicube t01234 D4.svg 6-demicube t01234 D3.svg 6-demicube t01234 A5.svg 6-demicube t01234 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

= Pentisteriruncicantic 6-kub Stor cellad hemihexeract (gochax)
  • HSM Coxeter :
    • HSM Coxeter, Regular Polytopes , 3:e upplagan, Dover New York, 1973
  •   Kaleidoscopes: Selected Writings of HSM Coxeter , redigerad av F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Papper 22) HSM Coxeter, Regular and Semi Regular Polytopes I , [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Papper 23) HSM Coxeter, Regular and Semi-Regular Polytopes II , [Math. Zeit. 188 (1985) 559-591]
    • (Papper 24) HSM Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3-45]
  • NW Johnson : Theory of Uniform Polytopes and Honeycombs , Ph.D. Avhandling, University of Toronto, 1966
  • Klitzing, Richard. "6D enhetliga polytoper (polypeta)" .

Anteckningar

Familj A n B n I 2 (p) / D n E 6 / E 7 / E 8 / F 4 / G 2 H n
Vanlig polygon Triangel Fyrkant p-gon Sexhörning Pentagon
Uniform polyeder Tetraeder Oktaeder Kub Demicube Dodekaeder Ikosaeder
Uniform polychoron Pentachoron 16-celler Tesseract Demitesseract 24-celler 120-celler 600-celler
Uniform 5-polytop 5-simplex 5-ortoplex 5-kub 5-demikub
Uniform 6-polytop 6-simplex 6-ortoplex 6-kub 6-demikub 1 22 2 21
Uniform 7-polytop 7-simplex 7-ortoplex 7-kub 7-demikub 1 32 2 31 3 21
Uniform 8-polytop 8-simplex 8-ortoplex 8-kub 8-demikub 1 42 2 41 4 21
Uniform 9-polytop 9-simplex 9-ortoplex 9-kub 9-demikub
Uniform 10-polytop 10-simplex 10-ortoplex 10-kub 10-demikub
Uniform n - polytop n - simplex n - ortoplex n - kub n - demikub 1 k2 2 k1 k 21 n - femkantig polytop
Ämnen: Polytopfamiljer Vanlig polytop Lista över vanliga polytoper och sammansättningar