Självjonisering av vatten

Autoprotolyse eau.svg

Självjonisering av vatten (även autojonisering av vatten och autodissociation av vatten ) är en joniseringsreaktion i rent vatten eller i en vattenlösning , där en vattenmolekyl, H 2 O, deprotonerar (förlorar kärnan av ett av dess väte atomer) för att bli en hydroxidjon , OH . Vätekärnan , H + , protonerar omedelbart en annan vattenmolekyl för att bilda en hydroniumkatjon , H 3 O + . Det är ett exempel på autoprotolys och exemplifierar vattnets amfotera natur.

Historia och notskrift

Självjonisering av vatten föreslogs först 1884 av Svante Arrhenius som en del av teorin om jonisk dissociation som han föreslog för att förklara ledningsförmågan hos elektrolyter inklusive vatten. Arrhenius skrev självjoniseringen som . Vid den tiden var ännu ingenting känt om atomstruktur eller subatomära partiklar, så han hade ingen anledning att betrakta bildandet av en jon från en väteatom vid elektrolys som mindre sannolikt än, säg, bildandet av en jon från en natriumatom.

1923 föreslog Johannes Nicolaus Brønsted och Martin Lowry att självjonisering av vatten faktiskt involverar två vattenmolekyler: . Vid det här laget hade elektronen och kärnan upptäckts och Rutherford hade visat att en kärna är mycket mindre än en atom. Detta skulle inkludera en bar jon som skulle motsvara en proton med noll elektroner. Brønsted och Lowry föreslog att denna jon inte existerar fri i lösning, utan alltid fäster sig till en vattenmolekyl (eller annat lösningsmedel) för att bilda hydroniumjonen H (eller annan protonerat lösningsmedel).

Senare spektroskopiska bevis har visat att många protoner faktiskt hydratiseras av mer än en vattenmolekyl. Den mest beskrivande notationen för den hydratiserade jonen är , där aq (för vattenhaltig) indikerar ett obestämt eller variabelt antal vattenmolekyler. Men beteckningarna och används fortfarande också flitigt på grund av deras historiska betydelse. Den här artikeln representerar mestadels den hydratiserade protonen som vilket motsvarar hydratisering av en enda vattenmolekyl.

Jämviktskonstant

Animation av självjonisering av vatten

Kemiskt rent vatten har en elektrisk ledningsförmåga på 0,055 μ S /cm. Enligt Svante Arrhenius teorier måste detta bero på närvaron av joner . Jonerna produceras av vattensjälvjoniseringsreaktionen, som gäller rent vatten och eventuell vattenlösning:

H2O + H2O H3O + + OH - _

Uttryckt med kemiska aktiviteter är en , istället för koncentrationer, den termodynamiska jämviktskonstanten för vattenjoniseringsreaktionen:

vilket är numeriskt lika med den mer traditionella termodynamiska jämviktskonstanten skriven som:

under antagandet att summan av de kemiska potentialerna för H + och H 3 O + formellt är lika med två gånger den kemiska potentialen för H 2 O vid samma temperatur och tryck.

Eftersom de flesta syra-baslösningar vanligtvis är mycket utspädda, uppskattas vattenaktiviteten i allmänhet vara lika med enhet, vilket gör att den joniska produkten av vatten kan uttryckas som:

I utspädda vattenlösningar är aktiviteten hos lösta ämnen (upplösta arter såsom joner) ungefär lika med deras koncentrationer. Således kan joniseringskonstanten , dissociationskonstanten , självjoniseringskonstanten , vattenjonproduktkonstanten eller jonprodukten av vatten, symboliserad med Kw , ges av:

där [H 3 O + ] är molariteten ( molär koncentration ) för vätekatjon eller hydroniumjon och [OH ] är koncentrationen av hydroxidjon . När jämviktskonstanten skrivs som en produkt av koncentrationer (i motsats till aktiviteter) är det nödvändigt att göra korrigeringar av värdet på beroende på jonstyrka och andra faktorer (se Nedan).

Vid 24,87 °C och noll jonstyrka är Kw lika med 1,0 × 10 −14 . Observera att som med alla jämviktskonstanter är resultatet dimensionslöst eftersom koncentrationen i själva verket är en koncentration i förhållande till standardtillståndet, som för H + och OH båda definieras till 1 molal (= 1 mol/kg) när molaliteten är används eller 1 molar (= 1 mol/L) när molär koncentration används. För många praktiska ändamål kan molaliteten (mol löst ämne/kg vatten) och molär (mol löst ämne/L lösning) anses vara nästan lika vid rumstemperatur och tryck om lösningens densitet förblir nära ett (dvs tillräckligt utspädda lösningar och försumbar effekt av temperaturförändringar). Den största fördelen med den molala koncentrationsenheten (mol/kg vatten) är att resultera i stabila och robusta koncentrationsvärden som är oberoende av lösningens densitet och volymförändringar (densitet beroende på vattnets salthalt (jonstyrka), temperatur och tryck ) ; därför molalitet den föredragna enheten som används i termodynamiska beräkningar eller under exakta eller mindre vanliga förhållanden, t.ex. för havsvatten med en densitet som avsevärt skiljer sig från den för rent vatten, eller vid förhöjda temperaturer, som de som råder i termiska kraftverk.

  Vi kan också definiera p K w −log 10 K w (vilket är ungefär 14 vid 25 °C). Detta är analogt med beteckningarna pH och p Ka för en syradissociationskonstant , där symbolen p betecknar en kologaritm . Den logaritmiska formen av jämviktskonstantekvationen är p K w = pH + pOH.

Beroende på temperatur, tryck och jonstyrka

Temperaturberoende för vattenjoniseringskonstanten vid 25 MPa
Vattenjoniseringskonstantens tryckberoende vid 25 °C
Variation av p Kw med jonstyrka hos NaCl-lösningar vid 25 ° C

Vattenjoniseringens beroende av temperatur och tryck har undersökts noggrant. Värdet på p K w minskar när temperaturen ökar från isens smältpunkt till ett minimum vid c. 250 °C, varefter den ökar upp till den kritiska punkten för vatten c. 374°C. Det minskar med ökande tryck.

p K w -värden för flytande vatten.
Temperatur Tryck p K w
0°C 0,10 MPa 14,95
25°C 0,10 MPa 13,99
50°C 0,10 MPa 13.26
75°C 0,10 MPa 12.70
100°C 0,10 MPa 12.25
150°C 0,47 MPa 11,64
200°C 1,5 MPa 11.31
250°C 4,0 MPa 11.20
300°C 8,7 MPa 11.34
350°C 17 MPa 11,92

Med elektrolytlösningar är värdet på p Kw beroende av jonstyrkan hos elektrolyten. Värden för natriumklorid är typiska för en 1:1 elektrolyt. Med 1:2 elektrolyter minskar MX 2 , p Kw med ökande jonstyrka.

Värdet på Kw är vanligtvis av intresse i vätskefasen . Exempelvärden för överhettad ånga (gas) och överkritisk vattenvätska ges i tabellen.

Jämförelse av p K w -värden för flytande vatten, överhettad ånga och överkritiskt vatten.
Temp.
Tryck
350°C 400°C 450°C 500°C 600°C 800°C
0,1 MPa 47.961 b 47.873 b 47.638 b 46.384 b 40.785 b
17 MPa 11.920 (flytande) a
25 MPa 11.551 (flytande) c 16,566 18.135 18.758 19.425 20.113
100 MPa 10.600 (flytande) c 10,744 11.005 11.381 12.296 13.544
1000 MPa 8,311 (flytande) c 8,178 8,084 8,019 7,952 7,957
Anteckningar till tabellen. Värdena är för superkritisk vätska förutom de markerade: a vid mättnadstryck motsvarande 350 °C. b överhettad ånga. c komprimerad eller underkyld vätska .

Isotopeffekter

Tungt vatten , D 2 O, självjoniserar mindre än normalt vatten, H 2 O;

D 2 O + D 2 O ⇌ D 3 O + + OD

Detta beror på jämviktsisotopeffekten , en kvantmekanisk effekt som tillskrivs syre som bildar en något starkare bindning till deuterium eftersom den större massan av deuterium resulterar i en lägre nollpunktsenergi .

Uttryckt med aktiviteter a , istället för koncentrationer, är den termodynamiska jämviktskonstanten för tungvattenjoniseringsreaktionen:

Antag att aktiviteten för D 2 O är 1, och antar att aktiviteterna för D 3 O + och OD är nära approximerade av deras koncentrationer

Följande tabell jämför värdena för p K w för H 2 O och D 2 O.

p K w -värden för rent vatten
T/°C 10 20 25 30 40 50
H2O _ _ 14.535 14,167 13.997 13.830 13.535 13,262
D 2 O 15,439 15.049 14,869 14,699 14.385 14,103

Joniseringsjämvikter i vatten-tungvattenblandningar

I jämvikter mellan vatten-tungvattenblandningar är flera arter involverade: H 2 O, HDO, D 2 O, H 3 O + , D 3 O + , H 2 DO + , HD 2 O + , HO , DO .

Mekanism

Reaktionshastigheten för joniseringsreaktionen

2H2O → H3O + + OH- _ _

beror på aktiveringsenergin , Δ E . Enligt Boltzmann-fördelningen ges andelen vattenmolekyler som har tillräcklig energi, på grund av termisk population, av

där k är Boltzmann-konstanten . Sålunda kan viss dissociation inträffa eftersom tillräcklig värmeenergi är tillgänglig. Följande händelseförlopp har föreslagits på basis av elektriska fältfluktuationer i flytande vatten. Slumpmässiga fluktuationer i molekylära rörelser ibland (ungefär en gång var tionde timme per vattenmolekyl) producerar ett elektriskt fält som är tillräckligt starkt för att bryta en syre- vätebindning , vilket resulterar i en hydroxid (OH ) och hydroniumjon (H 3 O + ); vätekärnan i hydroniumjonen färdas längs vattenmolekyler genom Grotthuss-mekanismen och en förändring i vätebindningsnätverket i lösningsmedlet isolerar de två jonerna, som stabiliseras genom solvatisering. Inom 1 pikosekund tillåter dock en andra omorganisation av vätebindningsnätverket snabb protonöverföring ned den elektriska potentialskillnaden och efterföljande rekombination av jonerna. Denna tidsskala överensstämmer med den tid det tar för vätebindningar att omorientera sig i vatten.

Den omvända rekombinationsreaktionen

H3O + + OH - → 2 H2O _

är bland de snabbaste kända kemiska reaktionerna, med en reaktionshastighetskonstant 1,3 × 10 11 M −1 s −1 vid rumstemperatur. En sådan snabb hastighet är karakteristisk för en diffusionskontrollerad reaktion , där hastigheten begränsas av hastigheten på molekylär diffusion .

Förhållande till vattnets neutrala punkt

Vattenmolekyler dissocierar i lika stora mängder H 3 O + och OH , så deras koncentrationer är nästan exakt 1,00 × 10 −7 mol dm −3 vid 25 °C och 0,1 MPa. En lösning där koncentrationerna H 3 O + och OH är lika med varandra anses vara en neutral lösning. 1/2 är I allmänhet neutralpunktens pH numeriskt lika med pKw .

Rent vatten är neutralt, men de flesta vattenprover innehåller föroreningar. Om en förorening är en syra eller bas kommer detta att påverka koncentrationerna av hydroniumjon och hydroxidjon. Vattenprover som utsätts för luft kommer att absorbera lite koldioxid för att bilda kolsyra (H 2 CO 3 ) och koncentrationen av H 3 O + kommer att öka på grund av reaktionen H 2 CO 3 + H 2 O = HCO 3 + H 30+ . _ _ Koncentrationen av OH kommer att minska på ett sådant sätt att produkten [H 3 O + ][OH ] förblir konstant för fast temperatur och tryck. Dessa vattenprover kommer därför att vara lätt sura. Om ett pH på exakt 7,0 krävs måste det upprätthållas med en lämplig buffertlösning .

Se även

  1. ^ a b "Utsläpp på joniseringskonstanten av H 2 O" (PDF) . Luzern : Den internationella sammanslutningen för egenskaperna hos vatten och ånga. augusti 2007.
  2. ^ IUPAC , kompendium av kemisk terminologi , 2nd ed. ("Guldboken") (1997). Online korrigerad version: (2006–) " autoprotolysis constant ". doi : 10.1351/goldbook.A00532
  3. ^ a b   Stumm, Werner; Morgan, James (1996). Vattenkemi. Chemical Equilibria and Rates in Natural Waters (3:e upplagan). John Wiley & Sons, Inc. ISBN 9780471511847 .
  4. ^ Harned, HS; Owen, BB (1958). The Physical Chemistry of Electrolytic Solutions (3:e upplagan). New York: Reinhold. s. 635 .
  5. ^ International Association for Properties of Water and Steam (IAPWS)
  6. ^ Bandura, Andrei V.; Lvov, Serguei N. (2006). "Vattnets joniseringskonstant över breda temperatur- och densitetsintervall" ( PDF) . Journal of Physical and Chemical Reference Data . 35 (1): 15–30. Bibcode : 2006JPCRD..35...15B . doi : 10.1063/1.1928231 .
  7. ^ 0,1 MPa för T < 100 °C . Mättnadstryck för T > 100 °C .
  8. ^ Harned, HS; Owen, BB (1958). The Physical Chemistry of Electrolytic Solutions (3:e upplagan). New York: Reinhold. s. 634 –649, 752–754.
  9. ^ Lide, DR, red. (1990). CRC Handbook of Chemistry and Physics (70:e upplagan). Boca Raton (FL):CRC Press.
  10. ^    Geissler, PL; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. (2001). "Autojonisering i flytande vatten". Vetenskap . 291 (5511): 2121–2124. Bibcode : 2001Sci...291.2121G . CiteSeerX 10.1.1.6.4964 . doi : 10.1126/science.1056991 . PMID 11251111 .
  11. ^ Eigen, M.; De Maeyer, L. (1955). "Untersuchungen über die Kinetik der Neutralization I" [Undersökningar om neutralisationens kinetik I]. Z. Elektrochem . 59 :986.
  12. ^   Stillinger, FH (1975). Teori och molekylära modeller för vatten . Adv. Chem. Phys . Framsteg inom kemisk fysik. Vol. 31. s. 1–101. doi : 10.1002/9780470143834.ch1 . ISBN 9780470143834 .
  13. ^ Rapaport, DC (1983). "Vätebindningar i vatten". Mol. Phys. 50 (5): 1151–1162. Bibcode : 1983MolPh..50.1151R . doi : 10.1080/00268978300102931 .
  14. ^   Chen, S.-H.; Teixeira, J. (1986). Struktur och dynamik hos lågtemperaturvatten som studerats med spridningstekniker . Adv. Chem. Phys . Framsteg inom kemisk fysik. Vol. 64. s. 1–45. doi : 10.1002/9780470142882.ch1 . ISBN 9780470142882 .
  15. ^ Tinoco, I.; Sauer, K.; Wang, JC (1995). Physical Chemistry: Principles and Applications in Biological Sciences (3:e upplagan). Prentice-Hall. sid. 386.

externa länkar