Lista över geodetiska polyedrar och Goldberg-polyedrar
Detta är en lista över utvalda geodetiska polyedrar och Goldberg-polyedrar , två oändliga klasser av polyedrar . Geodesiska polyedrar och Goldberg polyedrar är dualer av varandra. De geodetiska och Goldberg-polyedrarna parametriseras av heltal m och n , med och . T är trianguleringstalet, vilket är lika med .
Icosahedral
m | n | T | Klass |
Vertices (geodetiska) ansikten (Goldberg) |
Kanter |
Ansikten (geodesiska) Vertices (Goldberg) |
Ansiktstriangel _ |
Geodetisk | Goldberg | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symboler | Conway | Bild | Symboler | Conway | Bild | ||||||||
1 | 0 | 1 | jag | 12 | 30 | 20 |
{3,5} {3,5+} 1,0 |
jag |
{5,3} {5+,3} 1,0 GP 5 (1,0) |
D | |||
2 | 0 | 4 | jag | 42 | 120 | 80 | {3,5+} 2,0 |
uI dcdI |
{5+,3} 2,0 GP 5 (2,0) |
cD cD |
|||
3 | 0 | 9 | jag | 92 | 270 | 180 | {3,5+} 3,0 |
xI ktI |
{5+,3} 3,0 GP 5 (3,0) |
yD tkD |
|||
4 | 0 | 16 | jag | 162 | 480 | 320 | {3,5+} 4,0 |
uuI dccD |
{5+,3} 4,0 GP 5 (4,0) |
c 2 D | |||
5 | 0 | 25 | jag | 252 | 750 | 500 | {3,5+} 5,0 | u5I |
{5+,3} 5,0 GP 5 (5,0) |
c5D du5I |
|||
6 | 0 | 36 | jag | 362 | 1080 | 720 | {3,5+} 6,0 |
ux jag dctkdI |
{5+,3} 6,0 GP 5 (6,0) |
cyD ctkD |
|||
7 | 0 | 49 | jag | 492 | 1470 | 980 | {3,5+} 7,0 |
v v I dwrwdI |
{5+,3} 7,0 GP 5 (7,0) |
w w D wrwD |
|||
8 | 0 | 64 | jag | 642 | 1920 | 1280 | {3,5+} 8,0 |
u 3 I dcccdI |
{5+,3} 8,0 GP 5 (8,0) |
cccD | |||
9 | 0 | 81 | jag | 812 | 2430 | 1620 | {3,5+} 9,0 |
xxI ktktI |
{5+,3} 9,0 GP 5 (9,0) |
ååD tktkD |
|||
10 | 0 | 100 | jag | 1002 | 3000 | 2000 | {3,5+} 10,0 | uu5I |
{5+,3} 10,0 GP 5 (10,0) |
cc5D | |||
11 | 0 | 121 | jag | 1212 | 3630 | 2420 | {3,5+} 11,0 | u11I |
{5+,3} 11,0 GP 5 (11,0) |
cllD | |||
12 | 0 | 144 | jag | 1442 | 4320 | 2880 | {3,5+} 12,0 |
uuxD dcctkD |
{5+,3} 12,0 GP 5 (12,0) |
ccyD cctkD |
|||
13 | 0 | 169 | jag | 1692 | 5070 | 3380 | {3,5+} 13,0 | u13I |
{5+,3} 13,0 GP 5 (13,0) |
c13D | |||
14 | 0 | 196 | jag | 1962 | 5880 | 3920 | {3,5+} 14,0 |
uv v I dcw w dI |
{5+,3} 14,0 GP 5 (14,0) |
cwrwD | |||
15 | 0 | 225 | jag | 2252 | 6750 | 4500 | {3,5+} 15,0 |
u5xI u5ktI |
{5+,3} 15,0 GP 5 (15,0) |
c5yD c5tkD |
|||
16 | 0 | 256 | jag | 2562 | 7680 | 5120 | {3,5+} 16,0 | dc 4 dI |
{5+,3} 16,0 GP 5 (16,0) |
ccccD | |||
1 | 1 | 3 | II | 32 | 90 | 60 | {3,5+} 1,1 |
nI kD |
{5+,3} 1,1 GP 5 (1,1) |
yD tI |
|||
2 | 2 | 12 | II | 122 | 360 | 240 | {3,5+} 2,2 |
unI = dctI |
{5+,3} 2,2 GP 5 (2,2) |
czD cdkD |
|||
3 | 3 | 27 | II | 272 | 810 | 540 | {3,5+} 3,3 |
xnI ktkD |
{5+,3} 3,3 GP 5 (3,3) |
yzD tkdkD |
|||
4 | 4 | 48 | II | 482 | 1440 | 960 | {3,5+} 4,4 |
u 2 n I dcctI |
{5+,3} 4,4 GP 5 (4,4) |
c 2 zD cctI |
|||
5 | 5 | 75 | II | 752 | 2250 | 1500 | {3,5+} 5,5 | u5nI |
{5+,3} 5,5 GP 5 (5,5) |
c5zD | |||
6 | 6 | 108 | II | 1082 | 3240 | 2160 | {3,5+} 6,6 |
uxnI dctktI |
{5+,3} 6,6 GP 5 (6,6) |
cyz D ctkdkD |
|||
7 | 7 | 147 | II | 1472 | 4410 | 2940 | {3,5+} 7,7 |
v v nI dwrwtI |
{5+,3} 7,7 GP 5 (7,7) |
w w z D wrwdkD |
|||
8 | 8 | 192 | II | 1922 | 5760 | 3840 | {3,5+} 8,8 |
u 3 nI dccckD |
{5+,3} 8,8 GP 5 (8,8) |
c 3 z D ccctI |
|||
9 | 9 | 243 | II | 2432 | 7290 | 4860 | {3,5+} 9,9 |
xxnI ktktkD |
{5+,3} 9,9 GP 5 (9,9) |
yyzD tktktI |
|||
12 | 12 | 432 | II | 4322 | 12960 | 8640 | {3,5+} 12,12 |
uuxnI dccdktkD |
{5+,3} 12,12 GP 5 (12,12) |
ccyzD cckttI |
|||
14 | 14 | 588 | II | 5882 | 17640 | 11760 | {3,5+} 14,14 |
uv v nI dcw w kD |
{5+,3} 14,14 GP 5 (14,14) |
cw w zD cwrwtI |
|||
16 | 16 | 768 | II | 7682 | 23040 | 15360 | {3,5+} 16,16 |
uuuunI dcccctI |
{5+,3} 16,16 GP 5 (16,16) |
cccczD cccctI |
|||
2 | 1 | 7 | III | 72 | 210 | 140 | {3,5+} 2,1 |
vI dwD |
{5+,3} 2,1 GP 5 (2,1) |
wD | |||
3 | 1 | 13 | III | 132 | 390 | 260 | {3,5+} 3,1 | v3,1I |
{5+,3} 3,1 GP 5 (3,1) |
w3,1D | |||
3 | 2 | 19 | III | 192 | 570 | 380 | {3,5+} 3,2 | v3I |
{5+,3} 3,2 GP 5 (3,2) |
w3D | |||
4 | 1 | 21 | III | 212 | 630 | 420 | {3,5+} 4,1 | dwtI |
{5+,3} 4,1 GP 5 (4,1) |
wkI | |||
4 | 2 | 28 | III | 282 | 840 | 560 | {3,5+} 4,2 |
vnI dwtI |
{5+,3} 4,2 GP 5 (4,2) |
wdkD | |||
4 | 3 | 37 | III | 372 | 1110 | 740 | {3,5+} 4,3 | v4I |
{5+,3} 4,3 GP 5 (4,3) |
w4D | |||
5 | 1 | 31 | III | 312 | 930 | 620 | {3,5+} 5,1 | u5,1I |
{5+,3} 5,1 GP 5 (5,1) |
w5,1D | |||
5 | 2 | 39 | III | 392 | 1170 | 780 | {3,5+} 5,2 | u5,2I |
{5+,3} 5,2 GP 5 (5,2) |
w5,2D | |||
5 | 3 | 49 | III | 492 | 1470 | 980 | {3,5+} 5,3 |
vvI dwwD |
{5+,3} 5,3 GP 5 (5,3) |
wwD | |||
6 | 2 | 52 | III | 522 | 1560 | 1040 | {3,5+} 6,2 | v3,1uI |
{5+,3} 6,2 GP 5 (6,2) |
w3,1cD | |||
6 | 3 | 63 | III | 632 | 1890 | 1260 | {3,5+} 6,3 |
vxI dwdktI |
{5+,3} 6,3 GP 5 (6,3) |
wyD wtkD |
|||
8 | 2 | 84 | III | 842 | 2520 | 1680 | {3,5+} 8,2 |
vunI dwctI |
{5+,3} 8,2 GP 5 (8,2) |
wczD wcdkD |
|||
8 | 4 | 112 | III | 1122 | 3360 | 2240 | {3,5+} 8,4 |
vuuI dwccD |
{5+,3} 8,4 GP 5 (8,4) |
wccD | |||
11 | 2 | 147 | III | 1472 | 4410 | 2940 | {3,5+} 11,2 |
vvnI dwwtI |
{5+,3} 11,2 GP 5 (11,2) |
wwzD | |||
12 | 3 | 189 | III | 1892 | 5670 | 3780 | {3,5+} 12,3 |
vxnI dwtktktI |
{5+,3} 12,3 GP 5 (12,3) |
wyzD wtktI |
|||
10 | 6 | 196 | III | 1962 | 5880 | 3920 | {3,5+} 10,6 |
vvuI dwwcD |
{5+,3} 10,6 GP 5 (10,6) |
wwcD | |||
12 | 6 | 252 | III | 2522 | 7560 | 5040 | {3,5+} 12,6 |
vxuI dwdktcI |
{5+,3} 12,6 GP 5 (12,6) |
cywD wctkD |
|||
16 | 4 | 336 | III | 3362 | 10080 | 6720 | {3,5+} 16,4 |
vuunI dwdckD |
{5+,3} 16,4 GP 5 (16,4) |
wcczD wcctI |
|||
14 | 7 | 343 | III | 3432 | 10290 | 6860 | {3,5+} 14,7 |
v v vI dwrwwD |
{5+,3} 14,7 GP 5 (14,7) |
w w wD wrwwD |
|||
15 | 9 | 441 | III | 4412 | 13230 | 8820 | {3,5+} 15,9 |
vvxI dwwtkD |
{5+,3} 15,9 GP 5 (15,9) |
wwxD wwtkD |
|||
16 | 8 | 448 | III | 4482 | 13440 | 8960 | {3,5+} 16,8 |
vuuuI dwcccD |
{5+,3} 16,8 GP 5 (16,8) |
wcccD | |||
18 | 1 | 343 | III | 3432 | 10290 | 6860 | {3,5+} 18,1 |
vvvI dwwwD |
{5+,3} 18,1 GP 5 (18,1) |
wwwD | |||
18 | 9 | 567 | III | 5672 | 17010 | 11340 | {3,5+} 18,9 |
vxxI dwtktkD |
{5+,3} 18,9 GP 5 (18,9) |
wyyD wtktkD |
|||
20 | 12 | 784 | III | 7842 | 23520 | 15680 | {3,5+} 20,12 |
vvuuI dwwccD |
{5+,3} 20,12 GP 5 (20,12) |
wwccD | |||
20 | 17 | 1029 | III | 10292 | 30870 | 20580 | {3,5+} 20,17 |
vvvnI dwwwtI |
{5+,3} 20,17 GP 5 (20,17) |
wwwzD wwwdkD |
|||
28 | 7 | 1029 | III | 10292 | 30870 | 20580 | {3,5+} 28,7 |
v v vnI dwrwwdkD |
{5+,3} 28,7 GP 5 (28,7) |
w w wzD wrwwdkD |
Octaedral
m | n | T | Klass |
Vertices (geodetiska) ansikten (Goldberg) |
Kanter |
Ansikten (geodetiska) Vertices (Goldberg) |
Ansiktstriangel _ |
Geodetisk | Goldberg | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symboler | Conway | Bild | Symboler | Conway | Bild | ||||||||
1 | 0 | 1 | jag | 6 | 12 | 8 |
{3,4} {3,4+} 1,0 |
O |
{4,3} {4+,3} 1,0 GP 4 (1,0) |
C | |||
2 | 0 | 4 | jag | 18 | 48 | 32 | {3,4+} 2,0 |
dcC dcC |
{4+,3} 2,0 GP 4 (2,0) |
cC cC |
|||
3 | 0 | 9 | jag | 38 | 108 | 72 | {3,4+} 3,0 | ktO |
{4+,3} 3,0 GP 4 (3,0) |
tkC | |||
4 | 0 | 16 | jag | 66 | 192 | 128 | {3,4+} 4,0 |
uuO dccC |
{4+,3} 4,0 GP 4 (4,0) |
ccC | |||
5 | 0 | 25 | jag | 102 | 300 | 200 | {3,4+} 5,0 | u5O |
{4+,3} 5,0 GP 4 (5,0) |
c5C | |||
6 | 0 | 36 | jag | 146 | 432 | 288 | {3,4+} 6,0 |
uxO dctkdO |
{4+,3} 6,0 GP 4 (6,0) |
cyC ctkC |
|||
7 | 0 | 49 | jag | 198 | 588 | 392 | {3,4+} 7,0 | dwrwO |
{4+,3} 7,0 GP 4 (7,0) |
wrwO | |||
8 | 0 | 64 | jag | 258 | 768 | 512 | {3,4+} 8,0 |
uuuO dcccC |
{4+,3} 8,0 GP 4 (8,0) |
cccC | |||
9 | 0 | 81 | jag | 326 | 972 | 648 | {3,4+} 9,0 |
xxO ktktO |
{4+,3} 9,0 GP 4 (9,0) |
yyC tktkC |
|||
1 | 1 | 3 | II | 14 | 36 | 24 | {3,4+} 1,1 | kC |
{4+,3} 1,1 GP 4 (1,1) |
till | |||
2 | 2 | 12 | II | 50 | 144 | 96 | {3,4+} 2,2 |
ukC dctO |
{4+,3} 2,2 GP 4 (2,2) |
czC ctO |
|||
3 | 3 | 27 | II | 110 | 324 | 216 | {3,4+} 3,3 | ktkC |
{4+,3} 3,3 GP 4 (3,3) |
tktO | |||
4 | 4 | 48 | II | 194 | 576 | 384 | {3,4+} 4,4 |
uunO dcctO |
{4+,3} 4,4 GP 4 (4,4) |
cczC cctO |
|||
2 | 1 | 7 | III | 30 | 84 | 56 | {3,4+} 2,1 |
vO dwC |
{4+,3} 2,1 GP 4 (2,1) |
toalett |
Tetraedrisk
m | n | T | Klass |
Vertices (geodetiska) ansikten (Goldberg) |
Kanter |
Ansikten (geodetiska) Vertices (Goldberg) |
Ansiktstriangel _ |
Geodetisk | Goldberg | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symboler | Conway | Bild | Symboler | Conway | Bild | ||||||||
1 | 0 | 1 | jag | 4 | 6 | 4 |
{3,3} {3,3+} 1,0 |
T |
{3,3} {3+,3} 1,0 GP 3 (1,0) |
T | |||
1 | 1 | 3 | II | 8 | 18 | 12 | {3,3+} 1,1 |
kT kT |
{3+,3} 1,1 GP 3 (1,1) |
tT tT |
|||
2 | 0 | 4 | jag | 10 | 24 | 16 | {3,3+} 2,0 |
dcT dcT |
{3+,3} 2,0 GP 3 (2,0) |
cT cT |
|||
3 | 0 | 9 | jag | 20 | 54 | 36 | {3,3+} 3,0 | ktT |
{3+,3} 3,0 GP 3 (3,0) |
tkT | |||
4 | 0 | 16 | jag | 34 | 96 | 64 | {3,3+} 4,0 |
uuT dccT |
{3+,3} 4,0 GP 3 (4,0) |
ccT | |||
5 | 0 | 25 | jag | 52 | 150 | 100 | {3,3+} 5,0 | u5T |
{3+,3} 5,0 GP 3 (5,0) |
c5T | |||
6 | 0 | 36 | jag | 74 | 216 | 144 | {3,3+} 6,0 |
uxT dctkdT |
{3+,3} 6,0 GP 3 (6,0) |
cyT ctkT |
|||
7 | 0 | 49 | jag | 100 | 294 | 196 | {3,3+} 7,0 |
vrvT dwrwT |
{3+,3} 7,0 GP 3 (7,0) |
wrwT | |||
8 | 0 | 64 | jag | 130 | 384 | 256 | {3,3+} 8,0 |
u 3 T dcccdT |
{3+,3} 8,0 GP 3 (8,0) |
c 3 T cccT |
|||
9 | 0 | 81 | jag | 164 | 486 | 324 | {3,3+} 9,0 |
xxT ktktT |
{3+,3} 9,0 GP 3 (9,0) |
yyT tktkT |
|||
3 | 3 | 27 | II | 56 | 162 | 108 | {3,3+} 3,3 | ktkT |
{3+,3} 3,3 GP 3 (3,3) |
tktT | |||
2 | 1 | 7 | III | 16 | 42 | 28 | {3,3+} 2,1 | dwT |
{3+,3} 2,1 GP 5 (2,1) |
wT |
- Wenninger, Magnus (1979), Spherical Models , Cambridge University Press, ISBN 978-0-521-29432-4 , MR 0552023 , arkiverad från originalet den 4 juli 2008 Återtryckt av Dover 1999 ISBN 978-40-9216- 4