Burchnall-Chaundy teori
Inom matematiken introducerades Burchnall-Chaundy-teorin om pendling av linjära vanliga differentialoperatorer av Burchnall och Chaundy ( 1923 , 1928 , 1931 ) .
Ett av huvudresultaten säger att två pendlande differentialoperatorer uppfyller en icke-trivial algebraisk relation. Polynomet som relaterar de två pendlingsdifferentialoperatorerna kallas Burchnall–Chaundy - polynomet .
- Burchnall, JL; Chaundy, TW (1923), "Commutative ordinary differential operators", Proceedings of the London Mathematical Society , 21 : 420–440, doi : 10.1112/plms/s2-21.1.420 , ISSN 0024-6115 1201805 , S6201CID
- Burchnall, JL; Chaundy, TW (1928), "Commutative Ordinary Differential Operators", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , The Royal Society, 118 (780): 557–583, Bibcode : 1928RSPSA.118..557B , doi : 10.1098 /rspa.1928.0069 , 1928.0069 090 , JSTOR 1928 .
- Burchnall, JL; Chaundy, TW (1931), "Commutative Ordinary Differential Operators. II. Identiteten P n = Q m ", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , The Royal Society, 134 (824): 471–485, Bibcode : 1931RSPSA.134..471B , doi : 10.1098/rspa.1931.0208 , 5 ISSN 209 , 8-48 50 5
- Gesztesy, Fritz; Holden, Helge (2003), Soliton-ekvationer och deras algebro-geometriska lösningar. Vol. I (1+1)-dimensionella kontinuerliga modeller , Cambridge Studies in Advanced Mathematics, vol. 79, Cambridge University Press , ISBN 978-0-521-75307-4 , MR 1992536
Kategori: